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Abstract

Pricing actuaries typically operate within the framework of generalized linear models
(GLMs). With the upswing of data analytics, our study puts focus on machine learning
methods to develop full tariff plans built from both the frequency and severity of claims.
We adapt the loss functions used in the algorithms such that the specific characteristics of
insurance data are carefully incorporated: highly unbalanced count data with excess zeros
and varying exposure on the frequency side combined with scarce, but potentially long-tailed
data on the severity side. A key requirement is the need for transparent and interpretable
pricing models which are easily explainable to all stakeholders. We therefore focus on ma-
chine learning with decision trees: starting from simple regression trees, we work towards
more advanced ensembles such as random forests and boosted trees. We show how to choose
the optimal tuning parameters for these models in an elaborate cross-validation scheme, we
present visualization tools to obtain insights from the resulting models and the economic
value of these new modeling approaches is evaluated. Boosted trees outperform the classi-
cal GLMs, allowing the insurer to form profitable portfolios and to guard against potential
adverse risk selection.

Key words: cross-validation, deviance, frequency–severity modeling, gradient boosting
machine, interpretable machine learning, model lift

1 Introduction

Insurance companies bring security to society by offering protection against financial losses.
They allow individuals to trade uncertainty for certainty, by transferring the risk to the insurer
in exchange for a fixed premium. An insurer sets the price for an insurance policy before its
actual cost is revealed. Due to this phenomenon, known as the reverse production cycle of the
insurance business, it is of vital importance that an insurer properly assesses the risks in its
portfolio. To this end, tools from predictive modeling come in handy.

The insurance business is highly data driven and partly relies on algorithms for decision making.
In order to price a contract, property and casualty (P&C, or: general, non-life) insurers predict
the loss cost y for each policyholder based on his/her observable characteristics x. The insurer
therefore develops a predictive model f , mapping the risk factors x to the predicted loss cost ŷ
by setting ŷ = f(x). For simplicity, this predictive model is usually built in two stages by
considering separately the frequency and severity of the claims. Generalized linear models
(GLMs), introduced by Nelder and Wedderburn (1972), are the industry standard to develop
state-of-the-art analytic insurance pricing models (Haberman and Renshaw, 1997; De Jong and
Heller, 2008; Frees, 2015). Pricing actuaries often code all risk factors in a categorical format,
either based on expert opinions (Frees and Valdez, 2008; Antonio et al., 2010) or in a data-driven
way (Henckaerts et al., 2018). GLMs involving only categorical risk factors result in predictions
available in tabular format, that can easily be translated into interpretable tariff plans.
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Technological advancements have boosted the popularity of machine learning and big data an-
alytics, thereby changing the landscape of predictive modeling in many business applications.
However, few papers in the insurance literature go beyond the actuarial comfort zone of GLMs.
Dal Pozzolo (2010) contrasts the performance of various machine learning techniques to predict
claim frequency in the Allstate Kaggle competition. Guelman (2012) compares GLMs and gra-
dient boosted trees for predicting the accident loss cost of auto at-fault claims. Liu et al. (2014)
approach the claim frequency prediction problem using multi-class AdaBoost trees. Wüthrich
and Buser (2019) and Zöchbauer et al. (2017) show how tree-based machine learning techniques
can be adapted to model claim frequencies. Yang et al. (2018) predict insurance premiums by
applying a gradient boosted tree algorithm to Tweedie models. Pesantez-Narvaez et al. (2019)
employ XGBoost to predict the occurrence of claims using telematics data. Ferrario et al. (2018)
and Schelldorfer and Wüthrich (2019) propose neural networks to model claim frequency, ei-
ther directly or via a nested GLM. Machine learning techniques have also been used in other
insurance applications, such as policy conversion or customer retention (Spedicato et al., 2018),
renewal pricing (Krasheninnikova et al., 2019) and claim fraud detection (Wang and Xu, 2018).

Insurance pricing models are heavily regulated and they must meet specific requirements before
being deployed in practice, posing some challenges for machine learning algorithms. Firstly, the
European Union’s General Data Protection Regulation (GDPR, 2016), effective May 25, 2018,
establishes a regime of “algorithmic accountability” of decision-making machine algorithms. By
law, individuals have the right to an explanation of the logic behind the decision (Kaminski,
2018), which means that pricing models must be transparent and easy to communicate to all
stakeholders. Qualified transparency (Pasquale, 2015) implies that customers, managers and
the regulator should receive information in different degrees of scope and depth. Secondly, every
policyholder should be charged a fair premium, related to his/her risk profile, to minimize the
potential for adverse selection (Dionne et al., 1999). If the heterogeneity in the portfolio is not
carefully reflected in the pricing, the good risks will be prompt to lapse and accept a lower pre-
mium elsewhere, leaving the insurer with an inadequately priced portfolio. Thirdly, the insurer
has the social role of creating solidarity among the policyholders. The use of machine learning
for pricing should in no way lead to an extreme “personalization of risk” or discrimination,
e.g., in the form of extremely high premiums (O’Neil, 2017) for some risk profiles that actually
entail no risk transfer. By finding a trade-off between customer segmentation and risk pooling,
the insurer avoids adverse selection while offering an effective insurance product involving a
risk transfer for all policyholders. In a regime of algorithmic accountability, insurers should be
held responsible for their pricing models in terms of transparency, fairness and solidarity. It is
therefore very important to be able to “look under the hood” of machine learning algorithms
and the resulting pricing models. That is exactly one of the goals of this paper.

In this paper, we study how tree-based machine learning methods can be applied to insurance
pricing. The building blocks of these techniques are decision trees, covered in Friedman et al.
(2001). These are simple predictive models that mimic human decision-making in the form of
yes-no questions. In insurance pricing, a decision tree partitions a portfolio of policyholders into
groups of homogeneous risk profiles based on some characteristics. The partition of the portfolio
is directly observable, resulting in high transparency. For each subgroup, a constant prediction
is put forward, automatically inducing solidarity among the policyholders in a subgroup (as
long as the size of this subgroup is large enough). These aspects of decision trees make them
good candidates for insurance pricing. However, the predictive performance of such simple trees
tends to be rather low. We therefore consider more complex algorithms that combine multiple
decision trees in an ensemble, i.e., tree-based machine learning. These ensemble techniques
usually provide better predictive performance, but at the cost of less transparency. We employ
model interpretation tools to understand these “black boxes”, allowing us to interpret the
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resulting models and underlying decision process. Tree-based machine learning techniques are
often praised for their ability to discover interaction effects in the data, a very useful insight for
insurers that will be explored in this paper.

Insurance claim data typically entails highly imbalanced count data with excess zeros and vary-
ing exposure-to-risk on the frequency side, combined with long- or even heavy-tailed continuous
data on the severity side. Standard machine learning algorithms typically deal with data that is
more normal-like or balanced. Guelman (2012) models the accident loss cost by simplifying the
frequency count regression problem into a binary classification task. This however cannot factor
in varying exposure-to-risk and leads to a loss of information regarding policyholders who file
more than one claim in a period. Wüthrich and Buser (2019) and Zöchbauer et al. (2017) show
how the specific data features on the frequency side can be taken into account for regression.

We extend the existing literature by also putting focus on the severity side of claims and ob-
taining full tariff plans on real-world claims data from an insurance portfolio. We develop an
elaborate cross-validation scheme instead of relying on built-in routines from software packages
and we take into account multiple types of risk factors: categorical, continuous and spatial
information. The goal of this paper is to investigate how tree-based pricing models perform
compared to the classical actuarial approach with GLMs. This comparison puts focus on statis-
tical performance, interpretation and business implications. We go beyond a purely statistical
comparison, but acknowledge the fact that the resulting pricing model has to be deployed, after
marketing adjustments, in a business environment with specific requirements.

The rest of this paper is structured as follows. Section 2 introduces the basic principles and
guidelines for building a benchmark pricing GLM. Section 3 consolidates the important technical
details on tree-based machine learning. Section 4 presents interpretations from the optimal
frequency and severity models fitted on a Belgian insurance data set, together with an out-
of-sample performance comparison. Section 5 reviews the added value from a business angle
and Section 6 concludes this paper. In an accompanying online supplement, available at https:
//github.com/henckr/sevtree, we provide more details on the construction and interpretation
of tree-based machine learning methods for the severity.

2 State-of-the-art insurance pricing models

To assess the possible merits of tree-based machine learning for insurance pricing, we first have
to establish a fair benchmark pricing model that meets industry standards. GLMs are by far the
most popular pricing models in today’s industry. This section outlines the basic principles and
steps for creating a benchmark pricing GLM with the strategy from Henckaerts et al. (2018).

A P&C insurance company is interested in the total loss amount L per unit of exposure-to-
risk e, where L is the total loss for the N claims reported by a policyholder during the exposure
period e. P&C insurers usually opt for a so-called frequency-severity strategy to price a contract
(Denuit et al., 2007; Frees et al., 2014; Parodi, 2014). Claim frequency F is the number of claims
N filed per unit of exposure-to-risk e. Claim severity S refers to the cost per claim and is defined
by the average amount per claim filed, that is the total loss amount L divided by the number
of claims N . The technical price π (or: pure/risk premium) then follows as:

π = E
(
L

e

)
indep.

= E
(
N

e

)
× E

(
L

N
| N > 0

)
= E(F )× E(S),

assuming independence between the frequency and the severity component of the premium
(Klugman et al., 2012). Alternatives, allowing dependence between F and S, are investigated
in the literature (Gschlößl and Czado, 2007; Czado et al., 2012; Garrido et al., 2016).

https://github.com/henckr/sevtree
https://github.com/henckr/sevtree
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Predictive models for both F and S are typically developed within the framework of GLMs.
Let Y , the response variable of interest, follow a distribution from the exponential family. The
structure of a GLM with all explanatory variables in a categorical format is:

η = g(µ) = z>β = β0 +

q∑
j=1

βjzj , (1)

with η the linear predictor, g(·) the link function and µ the expectation of Y . The q + 1
dimensional 0/1-valued vector z contains a 1 for the intercept together with the q dummy
variables expressing the policyholder’s risk profile. In a claim frequency model, the response
variable N typically follows a count distribution such as the Poisson. Assuming g(·) = ln(·),
the model may account for exposure-to-risk through an offset ln(e) such that the risk premium
is proportional to the exposure. In a claim severity model, the response variable L/N typically
follows a right skewed distribution with a long right tail such as the gamma or log-normal. Only
policyholders filing at least one claim, i.e., N > 0, contribute to the severity model calibration
and the number of claims N is used as a case weight in the regression (Denuit and Lang, 2004).

Henckaerts et al. (2018) details a data-driven strategy to build a GLM with all risk factors in
a categorical format. This strategy aligns the practical requirements of a business environment
with the statistical flexibility of generalized additive models (GAMs, documented by Wood,
2006). GAMs extend the linear predictor in Eq. (1) with (multidimensional) smooth functions.
After an exhaustive search, the starting point for both frequency and severity is a flexible GAM
with smooth effects for continuous risk factors, including two-way interactions, and a smooth
spatial effect. These smooth effects are used to bin the continuous and spatial risk factors,
thereby transforming them to categorical variables. Figure 1 schematizes how decision trees
and unsupervised clustering are applied to achieve this binning. The output of this framework
is an interpretable pricing GLM, which serves as benchmark pricing model in this study.
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Figure 1: Schematic overview of the binning strategy of Henckaerts et al. (2018) for a continuous risk
factor (1a - 1c) and a spatial risk factor (2a - 2c). The smooth GAM effect of a continuous
risk factor (1a) is fed as a response to a decision tree (1b), which splits the continuous risk
factor into bins (1c). The smooth spatial effect (2a) is clustered in an unsupervised way (2b),
resulting in groups of postcode areas (2c). These categorical risk factors are used in a GLM.
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3 Tree-based machine learning methods for insurance pricing

Section 3.1 introduces the essential algorithmic details needed for understanding the tree-based
modeling techniques used in this paper. We consider regression trees (Breiman et al., 1984),
random forests (Breiman, 2001) and gradient boosting machines (Friedman, 2001) as alternative
modeling techniques for insurance pricing. These models rely on the choice of a loss function,
which has to be tailored to the characteristics of insurance data as we motivate in Section 3.2.
In Section 3.3 and 3.4, we explain our tuning strategy and present interpretation tools.

3.1 Algorithmic essentials

Regression tree Decision trees partition data based on yes-no questions, predicting the same
value for each member of the constructed subsets. A popular approach to construct decision
trees is the Classification And Regression Tree (CART) algorithm, introduced by Breiman et al.
(1984). The predictor space R is the set of possible values for the p variables x1, . . . , xp, e.g., R =
Rp for p unbounded, continuous variables and R = [min(x1),max(x1)]× [min(x2),max(x2)] for
two bounded, continuous variables. A tree divides the predictor space R into J distinct, non-
overlapping regions R1, . . . , RJ . In the jth region, the fitted response ŷRj is computed as
a (weighted) average of the training observations falling in that region. The regression tree
predicts a (new) observation with characteristics x as follows:

ftree(x) =
J∑
j=1

ŷRj 1(x ∈ Rj). (2)

The indicator 1(A) equals one if event A occurs and zero otherwise. As the J regions are
non-overlapping, the indicator function differs from zero for exactly one region for each x. A
tree therefore makes the same constant prediction ŷRj for the entire region Rj .

It is computationally impractical to consider every possible partition of the predictor space R in
J regions, therefore CART uses a top-down greedy approach known as recursive binary splitting.
From the full predictor space R, the algorithm selects a splitting variable xv with v ∈ {1, . . . , p}
and a cut-off c such that R = R1(v, c) ∪ R2(v, c) with R1(v, c) = {R |xv 6 c} and R2(v, c) =
{R |xv > c}. This forms two nodes in the tree, one containing the observations satisfying xv 6 c
and the other containing the observations satisfying xv > c. For a categorical splitting variable,
the corresponding factor levels are replaced by their empirical response averages, see Section 8.8
in Breiman et al. (1984). These averages are sorted from low to high and a cut-off c is chosen
such that the factor levels are split into two groups. The splitting variable xv and cut-off c are
chosen such that their combination results in the largest improvement in a carefully picked loss
function L (· , ·). For i = {1, . . . , n}, where n is the number of observations in the training set,
the CART algorithm searches for xv and c minimizing the following summations:∑

i :xi∈R1(v,c)

L (yi, ŷR1) +
∑

i :xi∈R2(v,c)

L (yi, ŷR2).

A standard loss function is the squared error loss, but we present more suitable loss functions
for claim frequency or severity data in Section 3.2. In a next iteration, the algorithm splits R1

and/or R2 in two regions and this process is repeated recursively until a stopping criterion is
satisfied. This stopping criterion typically puts a predefined limit on the size of a tree, e.g., a
minimum improvement in the loss function (Breiman et al., 1984), a maximum depth of the
tree or a minimum number of observations in a node of the tree (Friedman et al., 2001).
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A large tree is likely to overfit the data and does not generalize well to new data, while a small
tree is likely to underfit the data and fails to capture the general trends. This is related to
the bias-variance tradeoff (Friedman et al., 2001) meaning that a large tree has low bias and
high variance while a small tree has high bias but low variance. To prevent overfitting, the
performance of a tree is penalized by the number of regions J as follows:

J∑
j=1

∑
i :xi∈Rj

L (yi, ŷRj ) + J · cp ·
∑

i :xi∈R
L (yi, ŷR) , (3)

where the first part assesses the goodness of fit and the second part is a penalty measuring
the tree complexity. The strength of this penalty is driven by the complexity parameter cp,
a tuning parameter (see Section 3.3 for details on the tuning strategy). A large (small) value
for cp puts a high (low) penalty on extra splits and will result in a small (large) tree. The
complexity parameter cp is usually scaled with the loss function evaluated for the root tree,
which is exactly the last summation in Eq. (3); see Remark 3.8 in Zöchbauer et al. (2017). This
ensures that cp = 1 delivers a root tree without splits capturing an overall y estimate (denoted
ŷR in Eq. (3)) and cp = 0 results in the largest possible tree allowed by the stopping criterion.

Figure 2 depicts an example of a regression tree for claim frequency data. The rectangles are
internal nodes which partition observations going from top to bottom along the tree. The
top node, splitting on the bonus-malus level bm, is called the root node. The ellipses are leaf
nodes, containing prediction values for the observations ending in that specific leaf. Going from
left to right, the leaf nodes are ordered from low (light blue) to high (dark blue) prediction
values. Decision trees have many advantages because their predictions are highly explainable
and interpretable, both very important criteria for regulators. The downside of trees however is
that the level of predictive accuracy tends to be lower compared to other modeling techniques.
This is mainly driven by the high variance of a tree, e.g., slight changes in the data can result
in very different trees and therefore rather different predictions for certain observations. The
predictive performance can be substantially improved by aggregating multiple decision trees in
ensembles of trees, thereby reducing the variance. That is the idea behind popular ensemble
methods, such as random forests and gradient boosting machines, which are discussed next.
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Figure 2: Visual representation of a regression tree for claim frequency with nodes (rectangles) contain-
ing the splitting variable xv, edges (lines) representing the splits with cut-off c and leaf nodes
(ellipses) containing the prediction values ŷRj

. The variable names are defined in Table 7.
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Random forest Bagging, which is short for bootstrap aggregating (Breiman, 1996), and
random forests (Breiman, 2001) are similar ensemble techniques combining multiple decision
trees. Bagging reduces the variance of a single tree by averaging the forecasts of multiple trees
on bootstrapped samples of the original data. This stabilizes the prediction and improves the
predictive performance compared to a single decision tree. Starting from the data set D, the
idea of bagging is to take bootstrap samples {Dt}t=1,...,T and to build T decision trees, one for
each Dt independently. The results are then aggregated in the following way:

fbagg(x) =
1

T

T∑
t=1

ftree(x | Dt) , (4)

where the condition (| Dt) indicates that the tree was developed on the sample Dt.

The performance improvement through variance reduction gets bigger when there is less corre-
lation between the individual trees, see Lemma 3.25 in Zöchbauer et al. (2017). For that reason,
the trees are typically grown deep (i.e., cp = 0 in Eq. (3)), until a stopping criterion is satisfied.
Taking bootstrap samples of smaller sizes δ · n, with n the number of observations in D and
0 < δ < 1, decorrelates the trees further and reduces the model training time. However, a lot
of variability remains within a bagged ensemble because the trees built on the bootstrapped
data samples are still quite similar. This is especially the case when some explanatory variables
in the data are much more predictive than the others. The important variables will dominate
the first splits, causing all trees to be similar to one another. To prevent this, a random forest
further decorrelates the individual trees by sampling variables during the growing process. At
each split, m out of p variables are randomly chosen as candidates for the optimal splitting
variable. Besides this adaptation, a random forest follows the same strategy as bagging and
predicts a new observation according to Eq. (4). The random forest procedure is detailed in
Algorithm 1 where T and m are treated as tuning parameters (see Section 3.3 for details on the
tuning strategy).

for t = 1, . . . , T do
generate bootstrapped data Dt of size δ · n by sampling with replacement from data D;
while stopping criterion not satisfied do

randomly select m of the p variables;
find the optimal splitting variable xv from the m options together with cut-off c;

frf(x) = 1
T

∑T
t=1 ftree(x | Dt);

Algorithm 1: Procedure to build a random forest model.

A random forest improves the predictive accuracy obtained with a single decision tree by using
more, and hopefully slightly different, trees to solve the problem at hand. However, the trees
in a random forest are built independently from each other (i.e., the for loop in Algorithm 1
can be run in parallel) and do not share information during the training process.

Gradient boosting machine In contrast to random forests, boosting is an iterative statis-
tical method that combines many weak learners into one powerful predictor. Friedman (2001)
introduced decision trees as weak learners; each tree improves the current model fit, thereby us-
ing information from previously grown trees. At each iteration, the pseudo-residuals are used to
assess the regions of the predictor space for which the model performs poorly in order to improve
the fit in a direction of better overall performance. The pseudo-residual ρi,t for observation i in
iteration t is calculated as the negative gradient of the loss function −∂L {yi, f(xi)}/∂f(xi),
evaluated at the current model fit. This typical approach called stepwise gradient descent
ensures that a lower loss is obtained at the next iteration, until convergence. The boosting
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method learns slowly by fitting a small tree of depth d (with a squared error loss function) to
these pseudo-residuals, improving the model fit in areas where it does not perform well. For
each region Rj of that tree, the update b̂j is calculated as the constant that has to be added to
the previous model fit to minimize the loss function, namely b that minimizes L {yi, f(xi) + b}
over this region. A shrinkage parameter λ controls the learning speed by shrinking updates for
x ∈ Rj as follows: fnew(x) = fold(x) + λ · b̂j . A lower λ usually results in better performance
but also increases computation time because more trees are needed to converge to a good so-
lution. Typically, λ is fixed at the lowest possible value within the computational constraints
(Friedman, 2001). The collection of T trees at the final iteration is used to make predictions.

Stochastic gradient boosting, introduced by Friedman (2002), injects randomness in the training
process. In each iteration, the model update is computed from a randomly selected subsample
of size δ · n. This improves both the predictive accuracy and model training time when δ < 1.
The (stochastic) gradient boosting machine algorithm is given in Algorithm 2 where T and d
are treated as tuning parameters (see Section 3.3 for details on the tuning strategy).

initialize fit to the optimal constant model: f0(x) = arg minb
∑n

i=1 L (yi, b);
for t = 1, . . . , T do

randomly subsample data of size δ · n without replacement from data D;
for i = 1, . . . , δ · n do

ρi,t = −
[
∂L {yi,f(xi)}

∂f(xi)

]
f=ft−1

fit a tree of depth d to the pseudo-residuals ρi,t resulting in regions Rj,t for j = 1, . . . , Jt;
for j = 1, . . . , Jt do

b̂j,t = arg minb
∑

i :xi∈Rj,t

L {yi, ft−1(xi) + b}

update ft(x) = ft−1(x) + λ
∑Jt

j=1 b̂j,t1(x ∈ Rj,t);
fgbm(x) = fT (x);

Algorithm 2: Procedure to build a (stochastic) gradient boosting machine.

3.2 Loss functions for insurance data

The machine learning algorithms discussed in Section 3.1 require the specification of a loss (or:
cost) function that is to be minimized during the training phase of the model. We first present
a general discussion on the loss function choice, followed by details on the R implementation.

Loss functions The standard loss function for regression problems is the squared error loss:

L {yi, f(xi)} ∝ {yi − f(xi)}2 ,

where yi is the observed response and f(xi) is the prediction of the model for variables xi. How-
ever, the squared error is not necessarily a good choice when modeling integer-valued frequency
data or right-skewed severity data. We use the concept of deviance to make this idea clear. The
deviance is defined as D{y, f(x)} = −2 · ln[L{f(x)}/L(y)], a likelihood ratio where L{f(x)} is
the model likelihood and L(y) the likelihood of the saturated model (i.e., the model in which
the number of parameters equals the number of observations). The condition L{f(x)} 6 L(y)
always holds, so the ratio of likelihoods is bounded from above by one. For competing model
fits, the best one obtains the lowest deviance value on holdout data. We therefore use a loss
function L (· , ·) such that D{y, f(x)} =

∑n
i=1 L {yi, f(xi)}. This idea was put forward by

Venables and Ripley (2002) for general classification and regression problems.



3 Tree-based machine learning methods for insurance pricing 9

Assuming constant variance, the normal (or: Gaussian) deviance can be expressed as follows:

D{y, f(x)} = 2 ln
n∏
i=1

exp

{
− 1

2σ2
(yi − yi)2

}
− 2 ln

n∏
i=1

exp

[
− 1

2σ2
{yi − f(xi)}2

]

=
1

σ2

n∑
i=1

{yi − f(xi)}2 ,

which boils down to a scaled version of the sum of squared errors. This implies that a loss
function based on the squared error is appropriate when the normal assumption is reasonable.
More generally, the squared error is suitable for any continuous distribution symmetrical around
its mean with constant variance, i.e., any elliptical distribution. However, claim frequency and
severity data do not follow any elliptical distribution, as we show in Section 4.1. Therefore,
in an actuarial context, Wüthrich and Buser (2019) and Zöchbauer et al. (2017) propose more
suitable loss functions inspired by the GLM pricing framework from Section 2.

Claim frequency modeling involves count data, typically assumed to be Poisson distributed in
GLMs. Therefore, an appropriate loss function is the Poisson deviance, defined as follows:

D(y, f(x)) = 2 ln

n∏
i=1

exp(−yi)
yyii
yi!
− 2 ln

n∏
i=1

exp{−f(xi)}
f(xi)

yi

yi!

= 2

n∑
i=1

[
yi ln

yi
f(xi)

− {yi − f(xi)}
]
. (5)

When using an exposure-to-risk measure ei, f(xi) is replaced by ei ·f(xi) such that the exposure
is taken into account in the expected number of claims. Thus, the Poisson deviance loss function
can account for different policy durations. Predictions from a Poisson regression tree in Eq. (2)
are equal to the sum of the number of claims divided by the sum of exposure for all training
observations in each leaf node: ŷRj =

∑
i∈Ij Ni/

∑
i∈Ij ei for Ij = {i : xi ∈ Rj}. This optimal

estimate is obtained by setting the derivative of Eq. (5) with respect to f equal to zero. As a tree
node without claims leads to a division by zero in the deviance calculation, an adjustment can
be made to the implementation with a hyper-parameter that will be introduced in Section 3.3.

Right-skewed and long-tailed severity data is typically assumed to be gamma or log-normally
distributed in GLMs. In Section 4, we present the results obtained with the gamma deviance as
our preferred model choice, but a discussion on the use of the log-normal deviance is available
in the supplementary material. The gamma deviance is defined as follows:

D{y, f(x)} = 2 ln

n∏
i=1

1

yiΓ(α)

(
αyi
yi

)α
exp

(
−αyi
yi

)
− 2 ln

n∏
i=1

1

yiΓ(α)

{
αyi
f(xi)

}α
exp

{
− αyi
f(xi)

}

= 2

n∑
i=1

α

{
yi − f(xi)

f(xi)
− ln

yi
f(xi)

}
. (6)

The shape parameter α acts as a scaling factor and can therefore be ignored. When dealing
with case weights, α can be replaced by the weights wi. In severity modeling, the response is
the average claim amount of the Ni observed claims and the number of claims Ni should be
used as case weight. Predictions from a gamma regression tree in Eq. (2) are equal to the sum
of the total loss amount divided by the sum of the number of claims for all training observations
in each leaf node: ŷRj =

∑
i∈Ij Li/

∑
i∈Ij Ni for Ij = {i : xi ∈ Rj}. This optimal estimate is

obtained by setting the derivative of Eq. (6) with respect to f equal to zero.
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Implementation in R Our results are obtained with two special purpose packages for tree-
based machine learning in the statistical software R. For the regression trees and random forests,
we developed our own package called distRforest (Henckaerts, 2019). For stochastic gradient
boosting, we chose the implementation from Southworth (2015) of the gbm package, originally
developed by Ridgeway (2014). Our distRforest package extends the rpart package by Th-
erneau and Atkinson (2018) such that it is capable of developing regression trees and random
forests with our specific desired loss functions for both claim frequency and severity. We had
to go beyond the standard implementations especially because of the loss functions appropri-
ate for actuarial applications. Although the rpart package supports the Poisson deviance for
regression trees, it did not facilitate the use of a suitable loss function for severity data.

3.3 Tuning strategy

Tuning and hyper-parameters Table 1 gives an overview of the parameters used by the
algorithms described in Section 3.1. Some of these are chosen with care (tuning parameters),
while others are less influential and are set to a sensible predetermined value (hyper-parameters).
Instead of relying on the built-in tuning strategies of the R packages mentioned in Section 3.2,
we perform an extensive grid search to find the optimal values among a predefined tuning grid
displayed in Table 8 in Appendix B. We prefer a grid search above other tuning strategies,
such as Bayesian optimization (Xia et al., 2017), for its ease of implementation while being
a sound approach. The hyper-parameter κ enforces a stopping criterion for trees used across
the three algorithms, ensuring that a split is not allowed if a resulting node would contain less
than 1% of the observations. The hyper-parameter δ in Algorithms 1 and 2 specifies to develop
the trees in the ensemble techniques on 75% of the available training data. The shrinkage
parameter λ in Algorithm 2 is set at a low value for which computation time is still reasonable,
namely 0.01. The parameter γ helps to avoid division by zero when optimizing the Poisson
deviance in Eq. (5). This parameter is therefore only used when growing a regression tree and
random forest for claim frequency. We refer the reader to Section 8.2 in Therneau and Atkinson
(2019) for details on the rpart implementation. In short, a gamma prior is assumed on the
Poisson rate parameter to keep it from becoming zero when there is no claim in a node. With
Ij = {i : xi ∈ Rj}, the prediction in a node is adapted as follows:

ŷγRj
=

γ−2 +
∑

i∈Ij Ni

γ−2/ŷR +
∑

i∈Ij ei
.

Note that ŷγRj
= ŷR for γ = 0 and ŷγRj

= ŷRj =
∑

i∈Ij Ni/
∑

i∈Ij ei for γ =∞.

Tuning parameters Hyper-parameters

Regression tree
complexity parameter cp κ = 0.01

coefficient of variation gamma prior γ

Random forest
number of trees T cp = 0 γ = 0.25

number of split candidates m κ = 0.01 δ = 0.75

Gradient boosting machine
number of trees T λ = 0.01

tree depth d κ = 0.01 δ = 0.75

Table 1: Overview of the tuning and hyper-parameters for the different machine learning techniques.
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Cross-validation Machine learning typically relies on training data to build a model, vali-
dation data to tune the parameters and test data to evaluate the out-of-sample performance of
the model. In this paper, we develop an extensive cross-validation scheme, inspired by K-fold
cross-validation (Friedman et al., 2001), that serves two purposes. First, we tune the parame-
ters in the algorithms under study with a 5-fold cross-validation approach. Second, we evaluate
the predictive performance of the algorithms investigated on multiple data sets, instead of on a
single test set. Algorithm 3 outlines the basic principles of our approach and Figure 3 gives a
schematic representation. The full data D is split in six disjoint and stratified (Neyman, 1934)
subsets D1, . . . ,D6 by ordering first on claim frequency, then on severity. The ordered observa-
tions are assigned to each of the subsets in turn. Stratification ensures that the distribution of
response variables is similar in the six subsets, as we illustrate in Table 2 for the data introduced
in Section 4.1. The foreach and inner for loop in Algorithm 3 represent the typical approach
to perform 5-fold cross-validation on data from which we already separated a hold-out test set
Dk. The foreach loop iterates over the tuning grid and the for loop allows the validation set
D` to vary. The optimal tuning parameters are those that minimize the cross-validation error,
which is obtained by averaging the error on the validation sets. The outer for loop in Algorithm
3 allows the hold-out test set to vary and model performance is evaluated on this test set Dk.
Advantages of evaluating a trained model on multiple test sets are threefold. First, we obtain
multiple performance measures per model class which results in a more accurate performance
assessment. Second, it allows to perform sensitivity checks to assess the stability of different
algorithms. Third, it exempts us from the choice of a specific test set which could bias results.

Input: model class (mclass) and corresponding tuning grid (tgrid)
split data D into 6 disjoint stratified subsets D1, . . . ,D6;
for k = 1, . . . , 6 do

leave out Dk as test set;
foreach parameter combination in tgrid do

for ` ∈ {1, . . . , 6} \ k do
train a model fk` of mclass on D \ {Dk,D`};
evaluate the model performance on D` using loss function L (·, ·);
valid errork` ← 1

|D`|
∑
i∈D`

L {yi, fk`(xi)};

valid errork ← 1
5

∑
`∈{1,...,6}\k valid errork`;

optimal parameters from tgrid are those that minimize valid errork;
train a model fk of mclass on D \ Dk using the optimal parameters;
evaluate the model performance on Dk using loss function L (·, ·);
test errork ← 1

|Dk|
∑
i∈Dk

L {yi, fk(xi)};

Output: optimal tuning parameters + performance measure for each of the six folds.

Algorithm 3: Cross-validation scheme for model tuning and performance evaluation.

D1 D2 D3 D4 D5 D6∑
Ni/

∑
ei 0.1391687 0.1391433 0.1392443 0.1392213 0.1391517 0.1393045∑

Li/
∑
Ni 1296.165 1302.894 1324.667 1312.619 1330.884 1287.832

Table 2: Summary statistics of response variables in the different data subsets D1 to D6.
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D1 D2 D3 D4 D5 D6

D2 D3 D4 D5 D6

Train Valid. Test

Full data set D

Data fold 1

Data fold 2

Data fold 3

Data fold 4

Data fold 5

Data fold 6

Zoom in on training in fold 1

Figure 3: Graphical representation of the cross-validation scheme. The holdout test set for data fold k
is Dk, indicated in red. Within data fold k, we tune the parameters by 5-fold cross-validation
on D \ Dk with the validation sets D` in green and the training data D \ {Dk,D`} in blue.
After tuning, we train the model on D \ Dk using the optimal parameters for data fold k.

3.4 Interpretability matters: opening the black box

The GDPR’s regime of “algorithmic accountability” and the resulting “right to explanation”
highlight the vital importance of interpretable and transparent pricing models. However, ma-
chine learning techniques are often considered black boxes compared to statistical models such
as GLMs. In a GLM, parameter estimates and their standard errors give information about
the effect, uncertainty and statistical relevance of all variables. Such quick and direct interpre-
tations are not possible with machine learning techniques, but this section introduces tools to
gain insights from a model. A good source on interpretable machine learning is Molnar (2019).
These tools are evaluated on the data used to train the optimal models, i.e., D \ Dk for data
fold k. A subset of the training data can be used to save computation time if needed.

Variable importance Variable selection and model building is often a time consuming and
tedious process with GLMs (Henckaerts et al., 2018). An advantage of tree-based techniques is
their built-in variable selection strategy, making a priori design decisions less critical. Unraveling
the variables that actually matter in the prediction is thus crucial. For ` ∈ {1, . . . , p}, Breiman
et al. (1984) measure the importance of a specific feature x` in a decision tree t by summing
the improvements in the loss function over all the splits on x`:

I`(t) =

J−1∑
j=1

1{v(j) = `} (∆L )j .

The sum is taken over all J − 1 internal nodes of the tree, but only the nodes where the
splitting variable xv is x` contribute to this sum. These contributions (∆L )j represent the
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difference between the evaluated loss function before and after split j in the tree. The idea is
that important variables appear often and high in the decision tree such that the sum grows
largest for those variables. We normalize these variable importance values such that they sum
to 100%, giving a clear idea about the relative contribution of each variable in the prediction.

We can easily generalize this approach to the ensemble techniques by averaging the importance
of variable x` over the different trees that compose the ensemble:

I` =
1

T

T∑
t=1

I`(t) ,

where the sum is taken over all trees in the random forest or gradient boosting machine.

Partial dependence plots Besides knowing which variables are important, it is meaningful
to understand their effect on the prediction target. Partial dependence plots, introduced in
Friedman (2001), show the marginal effect of a variable on the predictions obtained from a
model. Hereto, we evaluate the prediction function in specific values of the variable of interest
x` for ` ∈ {1, . . . , p}, while averaging over a range of values of the other variables x∗:

f̄`(x`) =
1

n

n∑
i=1

fmodel(x`,x
∗
i ) . (7)

The vector x∗i holds the realized values of the other variables for observation i and n is the
number of observations in the training data. Interaction effects between x` and another variable
in x∗ can distort the effect (Goldstein et al., 2015). Suppose that half of the observations
show a positive association between x` and the prediction outcome (higher x` leads to higher
predictions), while the other half of the observations show a negative association between x`
and the prediction outcome. Taking the average over all observations will cause the partial
dependence plot to look like a horizontal line, wrongly indicating that x` has no effect on the
prediction outcome. Individual conditional expectations can rectify such wrong conclusions.

Individual conditional expectation Individual conditional expectations, introduced by
Goldstein et al. (2015), also show the effect of a variable on the predictions obtained from a
model, but on an individual level. We evaluate the prediction function in specific values of the
variable of interest x` for ` ∈ {1, . . . , p}, keeping the values of the other variables x∗ fixed:

f̃`,i(x`) = fmodel(x`,x
∗
i ) , (8)

where x∗i are the realized values of the other variables for observation i. We obtain an effect for
each observation i, allowing us to detect interaction effects when some (groups of) observations
show different behavior compared to others. For example, two distinct groupings will emerge
when half of the observations have a positive association and the other half a negative association
between x` and the prediction outcome. Individual conditional expectations can also be used
to investigate the uncertainty of the effect of variable x` on the prediction outcome. The partial
dependence plot can be interpreted as the average of this collection of individual conditional
expectations, i.e., f̄`(x`) = 1

n

∑n
i=1 f̃`,i(x`).

4 Case study: claim frequency and severity modeling

An insurer’s pricing team uses proprietary data to deliver a fine-grained tariff plan for a portfolio.
As a typical example of such data, we study a motor third party liability (MTPL) portfolio from
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a Belgian insurer in 1997. This section puts focus on the claim frequency and severity models
that are developed with the different modeling techniques. We briefly introduce the data and
we report the optimal tuning parameters for the frequency and severity models. Afterwards,
we use the tools from Section 3.4 to gain some insights in these optimal models. We conclude
this section with an out-of-sample deviance comparison to assess the statistical performance of
the different modeling techniques.

4.1 Quick scan of the MTPL data

The data used here is also analyzed in Denuit and Lang (2004), Klein et al. (2014) and Henck-
aerts et al. (2018). We follow the same data pre-processing steps as the aforementioned papers,
e.g., regarding the exclusion of very large claims. Table 7 in Appendix A lists a description
of the available variables. The portfolio contains 163,212 unique policyholders, each observed
during a period of exposure-to-risk expressed as the fraction of the year during which the pol-
icyholder was exposed to the risk of filing a claim. Claim information is known in the form
of the number of claims filed and the total amount claimed (in euro) by a policyholder during
her period of exposure. The data set lists five categorical, four continuous and two spatial risk
factors, each of them informing about specific characteristics of the policy or the policyholder.
A detailed discussion on the distribution of all variables is available in Henckaerts et al. (2018).
Regarding spatial information, we have access to the 4-digit postal code of the municipality of
residence and the accompanying latitude/longitude coordinates of the center of this area. The
GAM/GLM benchmarks employ spatial smoothing over the latitude/longitude coordinates. In
line with this approach, we use the coordinates as continuous variables in the tree-based models.

Figure 4 displays the distribution of the claims information (nclaims and amount) and the
exposure-to-risk measure (expo). Most policyholders in the portfolio are claim-free during their
insured period, some file one claim and few policyholders file two, three, four or five claims. The
majority of all these claims involve small amounts, but very large claims occur as well. Most
policyholders are exposed to the risk during the full year, but there are policyholders who started
the policy in the course of the year or surrendered the policy before the end of the year. Figure 4
motivates the use of loss functions which are not based on the squared error loss. We work with
the Poisson and gamma distribution/deviance for frequency and severity respectively as our
preferred distributional assumption (for GAM/GLM) and loss function choice (for tree-based
techniques). Note that earlier work on this data, such as Denuit et al. (2007) and Henckaerts
et al. (2018), assumed a log-normal distribution for severity. We illustrate the difference and
motivate our choice in the supplementary material.
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Figure 4: Distribution of the claim counts, amounts and the exposure-to-risk measure in the MTPL data.
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4.2 Optimal tuning parameters

Table 3 lists the optimal tuning parameters for the different machine learning techniques in each
of the six data folds. Comparing the number of splits in the trees and the number of trees in the
ensembles, we conclude that the frequency models are more extensive compared to the severity
variants. This is driven by the lower sample size for severity modeling and the fact that the
severity of a claim is typically much harder to predict than the frequency (Charpentier, 2014).

The complexity parameter cp does not give much information about the size of a regression tree
and therefore Table 3 also lists the number of splits in the tree. All frequency trees contain
between 20 and 38 splits while the severity trees comprise of only one or two splits. The
coefficient of variation for the gamma prior γ remains stable over the different data folds.

The number of trees T in the random forest is very unstable over the different folds for both
frequency and severity. This shows that the size of the eventual model highly depends on the
training data when simply averaging independently grown trees. In four out of six cases, the
number of split candidates m is equal to 5 for frequency models and 2 for the severity models.
The low value of m for the severity random forests indicates that the variance reduction is the
main driver for reducing the loss, as opposed to finding the best split out of multiple candidates.

The number of trees T in the gradient boosting machine is more stable over the folds compared
to the random forest. This shows that the sequential approach of growing a boosted model is
less affected by the specific data fold. The tree depth d ranges from 3 to 5 in the frequency
models. Table 3 reveals that the largest values of T correspond to the smallest values of d and
vice versa, highlighting the interplay between these tuning parameters. In five out of six cases,
the severity models use stumps (i.e., trees with only one split) as weak learners. A tree depth
of d = 1 makes these models completely additive, without interaction by construct.

Regression tree Random forest Boosting machine

data fold cp γ splits T m T d

Frequency

1 7.3× 10−5 0.125 38 4900 5 2600 3
2 1.4× 10−4 0.125 24 900 5 2000 4
3 1.1× 10−4 0.125 31 400 8 1400 5
4 1.2× 10−4 0.250 27 5000 5 1500 5
5 1.8× 10−4 0.250 20 600 10 1900 4
6 1.7× 10−4 0.250 23 100 5 2700 3

Severity

1 3.3× 10−3 - 2 4300 2 600 1
2 5.8× 10−3 - 1 200 2 300 1
3 3.7× 10−3 - 2 600 1 500 1
4 7.3× 10−3 - 1 100 2 400 2
5 5.4× 10−3 - 1 3600 2 600 1
6 5.4× 10−3 - 1 100 1 600 1

Table 3: Overview of the optimal tuning parameters for the tree-based machine learning techniques.

We also tune the benchmark GLMs for each of the six data folds separately, i.e., we perform
the binning strategy from Henckaerts et al. (2018) in each fold k such that the optimal bins
are chosen for the training data at hand D \ Dk. A grid is used for the two tuning parameters
involved, one for the continuous variables and one for the spatial effect, thereby avoiding the
two-step binning procedure initially proposed in Henckaerts et al. (2018). Examples of the
resulting benchmark GLMs for frequency and severity are presented in Appendix D.1.



4 Case study: claim frequency and severity modeling 16

4.3 Model interpretation

We will use the variable importance measure to find the most relevant variables in the frequency
and severity models. Afterwards, we will make use of partial dependence plots and individual
conditional expectations to gain understanding on a selection of interesting effects for the claim
frequency. Similar results on claim severity can be found in the supplementary material.

Variable importance To learn which variables matter for predicting claim frequency and
severity, we compare in Figure 5 the variable importance plots for the different machine learning
techniques over the six data folds. The variables are ranked from top to bottom, starting with
the most important one as measured by the average variable importance over the folds (multiple
variables with zero importance are ordered alphabetically from Z to A). By contrasting the
graphs in the left column of Figure 5, we see that the important variables (mostly bonus-malus
scale and age) are similar across all methods for the frequency model. Other relevant risk factors
are the power of the vehicle and the spatial risk factor (combining the longitude and latitude
information). The frequency GLM, presented in Table 9 in Appendix D.1, contains the top
seven variables together with coverage, which is ranked at the ninth place for all methods.

The right column of Figure 5 shows the variable importance for severity models. The ranking is
very dissimilar across the different modeling techniques. The regression tree models for severity
contain only one split using the type of coverage in four out of the six folds, while the other
two trees have an additional split on the age of the car. The random forest and gradient
boosting machine include more variables, but they both lead to rather different rankings of
the importance of those variables. The severity GLM, presented in Table 10 in Appendix D.1,
contains three variables: coverage, ageph and agec. An interesting observation is that the
most important risk factors in the gradient boosting machines are those selected in the GLMs.
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Figure 5: Variable importance in the optimal regression tree (top), random forest (middle) and gradient
boosting machine (bottom) per data fold (color) for frequency (left) and severity (right).
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Partial dependence plot of the age effect Figure 6 compares the partial dependence
effect of the age of the policyholder in frequency models. The two top panels of Figure 6 show
the GLM and GAM effects on the left and right respectively. As explained in Section 2, due
to our proposed data-driven approach, the GLM effects are a step-wise approximation of the
GAM effects. The risk of filing a claim is high for young policyholders and gradually decreases
with increasing ages to stabilize around the age of 35. The risk starts decreasing again around
the age of 50 and increases for senior policyholders around the age of 70. The bottom left
panel of Figure 6 shows the age effect captured by the regression trees. The effect is less stable
across the folds compared to the other methods, this is a confirmation and illustration of the
variability of a single regression tree. There is also no increase in risk for senior policyholders
in the regression trees. The bottom right panel of Figure 6 shows the age effect according to
the gradient boosting machines. This looks very similar to the smooth GAM effect with one
important distinction, namely the flat regions at the boundaries. This makes the tree-based
techniques more robust with respect to extrapolation and results in less danger of creating very
high premiums for risk profiles at edges. Note that the gradient boosting machine predicts a
wider range of frequencies than the regression tree, namely 0.12 to 0.20 versus 0.12 to 0.165
respectively. The shape of the age effect in the random forest, available in Appendix C, is rather
similar to the gradient boosting machine effect but on a slightly more compact range.
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Figure 6: Partial dependence plot to visualize the effect of the age of the policyholder on frequency
for the optimal model obtained per data fold (color) in a GLM (top left), GAM (top right),
regression tree (bottom left) and gradient boosting machine (bottom right).

Partial dependence plot of the spatial effect Figure 7 compares the spatial effect in
frequency models, more specifically the models trained on the data where fold D3 was kept as
the hold-out test set. We choose a specific data fold because we otherwise need to show six
maps of Belgium per method as opposed to overlaying six effects as in Figure 6. The two top
panels show the GLM and GAM effects on the left and right respectively. Brussels, the capital
of Belgium located in the center of the country, is clearly the most accident-prone area to live
and drive a car because of heavy traffic. The southern and northeastern parts of Belgium are
less risky because of sparser population and more rural landscapes. The bottom left panel of
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Figure 7 shows the spatial effect as it is captured with a regression tree. Splitting on longitude
and latitude coordinates results in a rectangular split pattern on the map of Belgium. The
bottom right panel of Figure 7 shows the spatial effect for the gradient boosting machine. The
underlying rectangular splits are still visible but in a smoother way compared to the regression
tree. Brussels still pops out as the most risky area and the pattern looks similar to the GLM
and GAM effects. The shape of the spatial effect in the random forest, available in Appendix C,
is again similar to that of the gradient boosting machine on a more compact range.
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Figure 7: Partial dependence plot to visualize the effect of the municipality of residence on frequency
in a GLM (top left), GAM (top right), regression tree (bottom left) and gradient boosting
machine (bottom right).

Figures 6 and 7 teach us that a single tree is not able to capture certain aspects in the data,
resulting in a coarse approximation of the underlying risk effect. The ensemble techniques are
able to capture refined risk differences in a much smoother way. The differences in the range
of the predicted effects imply that the gradient boosting machine performs more segmentation
while the random forest puts more focus on risk pooling.

Individual conditional expectation of the bonus-malus effect Figure 8 compares the
bonus-malus effect captured with a regression tree (left) and a gradient boosting machine (right)
for frequency data. As in Figure 7, we show the effect for the models trained on the data where
fold D3 was kept as the hold-out test set. The gray lines are individual conditional expectations
for 1000 random policyholders and the blue line shows the partial dependence curve. The values
for x∗ in Eq. (8) are those registered for the selected policyholders. On average, we observe an
increase in frequency risk as the blue line surges over the bonus-malus levels, which is to be
expected because higher bonus-malus levels indicate a worse claim history. We can get an idea
about the sensitivity of the bonus-malus effect across the different policyholders in the portfolio
by comparing the steepness of the gray lines. Keeping all other risk factors fixed, a steeper
effect indicates that a policyholder’s risk is more sensitive to changes in the bonus-malus scale.
This effect is driven by the combination of all risk factors registered for this policyholder.
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Figure 8: Effect of the bonus-malus scale on frequency in a regression tree (left) and gradient boosting
machine (right) as partial dependence (blue) and individual conditional expectations (gray).

The previous figures show some counterintuitive results regarding the monotonicity of a fitted
effect. For example, the bonus-malus individual conditional expectations for the regression tree
in Figure 8 reveal decreases in risk over increasing bonus-malus levels for certain policyholders.
This poses problems for the practical implementation of such a tariff because it assigns a lower
premium to policyholders with a worse claim history. In practice, an actuary would specify
monotonicity constraints on such a risk factor, either by an a posteriori smoothing of the
resulting effect or by using an implementation that allows to specify such constraints a priori,
e.g., the gbm package has this functionality. Our analysis does not enforce such constraints.

4.4 Hunting for interaction effects

Tree-based models are often praised for their ability to model interaction effects between vari-
ables (Buchner et al., 2017; Schiltz et al., 2018). The predictions of a model can not be expressed
as the sum of the main effects when interactions are present, because the effect of one variable
depends on the value of another variable. Friedman’s H-statistic, introduced by Friedman and
Popescu (2008), estimates the interaction strength by measuring how much of the prediction
variance originates from the interaction effect. We will put focus on two-way interactions be-
tween variables xk and x`, but in theory this measure can be applied to arbitrary interactions
between any number of variables. Let f̄k(xk) and f̄l(x`) represent the one-dimensional par-
tial dependence of the variables as defined in Section 3.4 and f̄kl(xk, x`) the two-way partial
dependence, defined analogously to Eq. (7). The H-statistic is expressed as:

H2
k` =

∑n
i=1{f̄kl(x

(i)
k , x

(i)
` )− f̄k(x

(i)
k )− f̄l(x

(i)
` )}2∑n

i=1 f̄
2
kl(x

(i)
k , x

(i)
` )

,

where x
(i)
k indicates that the partial dependence function is evaluated at the observed value of xk

for policyholder i. Assuming the partial dependence is centered at zero, the numerator measures
the variance of the interaction while the denominator measures the total variance. The ratio
of both therefore measures the interaction strength as the amount of variance explained by the
interaction. The H-statistic ranges from zero to one, where zero indicates no interaction and
one implies that the effect of xk and x` on the prediction is purely driven by the interaction.

Table 4 shows the fifteen highest two-way H-statistics among the variables available in the data
set (as listed in Table 7 in Appendix A) for the frequency gradient boosting machine trained
on the data where fold D3 was kept as the hold-out test set. The strongest interaction is found
between the longitude and latitude coordinates, which is not a surprise seeing how these two
variables together encode the region where the policyholder resides.
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Variables H-statistic Variables H-statistic Variables H-statistic

(lat, long) 0.2687 (agec, coverage) 0.1185 (bm, power) 0.0800
(fuel, power) 0.1666 (ageph, power) 0.1062 (ageph, lat) 0.0799
(agec, power) 0.1319 (ageph, bm) 0.0961 (agec, ageph) 0.0785
(ageph, sex) 0.1293 (power, sex) 0.0829 (long, sex) 0.0732
(coverage, long) 0.1203 (fuel, long) 0.0828 (agec, bm) 0.0678

Table 4: H-statistic of the 15 strongest two-way interactions between all the variables in the gradient
boosting machine for frequencies, trained on data with D3 as hold-out test set.

The H-statistic informs us on the strength of the interaction between two variables, but gives
us no idea on how the effect behaves. Figure 9 shows grouped partial dependence plots to
investigate the interactions highlighted in gray in Table 4. The partial dependence plots of a
specific variable are grouped into five equally sized groups based on the value of another variable.
Interaction effects between both variables can be discovered by comparing the evolution of the
curves over the five different groups. An interaction is at play when this evolution is different
for policyholders in different groups. In order to focus purely on the evolution of the effect, we
let all the curves in Figure 9 start at zero by applying a vertical shift.
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Figure 9: Grouped partial dependence plots for the gradient boosting machine on frequency, trained
on data with D3 as hold-out test set. The effect is binned in five equally sized groups. The
left column shows the effects for the power of the car grouped by the age of the policyholder
(top), the type of fuel (middle) and the bonus-malus scale (bottom). The right column shows
the effects for the sex of the policyholder (top), age of the car (middle) and type of coverage
(bottom), grouped by the age of the policyholder or car.
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An important and well-known effect in insurance pricing is the interaction between the age of the
policyholder and the power of the vehicle. Our benchmark GLM and GAM use this interaction
effect in the predictor and Figure 11 in Henckaerts et al. (2018) shows that young policyholders
with high power vehicles form an increased risk for the insurer regarding claim frequency. The
top left panel of Figure 9 shows the partial dependence of the power of the vehicle, grouped
by the age of the policyholder. The power effect is steepest for young policyholders, indicated
by the red line. The steepness of the effect decreases for increasing ages. The difference in
the steepness of the effect between young and old policyholders is a visual confirmation of the
interaction at play between the variables ageph and power. The top right panel of Figure 9
shows the partial dependence for the sex of the policyholders, grouped by their age. For young
policyholders, aged 18 to 33, we observe that males are on average more risky drivers compared
to females, while for the other age groups the female drivers are perceived more risky than males.
European insurers are not allowed to use gender in their tariff structure nowadays, implying
that young female drivers might be partly subsidizing their male peers.

The middle left panel of Figure 9 shows the partial dependence of the power of the vehicle,
grouped by the type of fuel. We observe that the steepness of the power effect is slightly higher
for gasoline cars. Drivers typically choose a diesel car when their annual mileage is above
average, which would justify their choice of buying a bigger and more comfortable car with
higher horsepower. However, drivers who own a high powered gasoline car might choose such
a car to accommodate for a more sportive driving style, making them more prone to the risk
of a claim. The middle right panel of Figure 9 shows the partial dependence of the age of the
vehicle, grouped by the policyholder’s age. We observe a big bump for young policyholders in
the vehicle age range from 5 to 15. This could indicate an increased claim frequency risk for
starting drivers who buy their first car on the second-hand market. The sharp drop around 19
could relate to vintage cars that are used less often and are thus less exposed to the claim risk.

The bottom left panel of Figure 9 shows the partial dependence of the power of the vehicle,
grouped by the bonus-malus scale. We observe that the power effect grows steeper for increas-
ing levels occupied in the bonus-malus scale. This indicates that driving a high powered car
becomes more risky for policyholders in higher bonus-malus scales. The bottom right panel
of Figure 9 shows the partial dependence of the type of coverage, grouped by the age of the
vehicle. For vehicles in the age range zero to three, we observe that adding material damage
covers decreases the claim frequency risk less compared to other age ranges. This might indi-
cate that policyholders who buy a new car add a material damage cover because they worry
about damaging their newly purchased vehicle, while policyholders with older cars who still add
damage covers are more risk-averse and also less risky drivers.

4.5 Statistical out-of-sample performance

Figure 10 compares the out-of-sample performance of the different models investigated over
the six data folds. We evaluate the Poisson deviance for frequency models and the gamma
deviance for severity models, see Eq. (5) and (6) respectively, on the holdout test data. In
the left panel of Figure 10, we observe a clear ranking of the out-of-sample Poisson deviance
among the different methods. The gradient boosting machine is most predictive, consistently
leading to the lowest deviance values. The performance of GLMs and GAMs is very similar,
which is expected because the GLM is a data driven approximation of the GAM, as explained
in Section 2. Next in line is the random forest, and the regression tree is the least predictive for
frequency. These results are very stable over the six data folds. The right panel of Figure 10
shows the out-of-sample gamma deviance for severity. The methods perform rather similarly
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and there is no clear winner or loser over the different folds. The peak at the fourth fold reveals
a weakness of the GAM: the extrapolation of smooth effects, see Figure 6, combined with out-
of-sample testing can lead to huge deviance values. In the severity GAM trained on D \D4 and
evaluated on D4, the problem occurred with the age of the car. Specifically, the maximal value
for agec in D \ D4 for severity is 32 while the maximal value in D4 is 37, thus requiring an
extrapolation of the calibrated smooth effect. This motivates to cap continuous variables at a
certain cut-off in a pre-processing stage for a GAM. A tree-based method automatically deals
with this problem thanks to the flat region at the outer ends of the effect, see Figure 6.
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Figure 10: Out-of-sample Poisson deviance for frequency (left) and gamma deviance for severity (right),
each color representing a different modeling technique.

This comparison only puts focus on the statistical performance of the frequency and severity
models. In the next section, we combine both in a pricing model and compare the different
tariff structures using practical business metrics relevant for an insurance company.

5 Model lift: from analytic to managerial insights

Choosing between two tariff structures is an important business decision. This creates the need
to translate our model findings to evaluation criteria that capture a manager’s interest. We
evaluate the economic value of a tariff using tools proposed in the literature to measure model
lift (Frees et al., 2013; Goldburd et al., 2016, Section 7.2). In this context, model lift refers
to the ability of a model to prevent adverse selection. An insurer might become victim hereof
when a competitor refines its tariff structure via innovation such that good risks switch to the
competitor and the insurer is left with the bad risks which are more prone to high losses.

We combine the claim frequency and severity models from Section 4 to obtain the technical
premium for each policy under consideration, allowing us to compare different tariff structures.
As Figure 3 illustrates, each observation is out-of-sample in exactly one of the data folds, more
specifically the observations in Dk are out-of-sample for data fold k. We then use the optimal
model trained on D \ Dk to predict the policyholders in holdout test set Dk. Following this
strategy, we obtain one premium per modeling technique for each policyholder in the full data D.
Table 5 shows a comparison between the predicted premium totals and the observed losses, both
on the portfolio level and split by data fold. On average, every method is perfectly capable of
replicating the total losses. Section 5.2 compares the model lift measures from Section 5.1 on
the portfolio level. We also analyzed each of the data folds separately (not shown), leading to
the same ranking of models as in Section 5.2, thereby validating the consistency of our results.



5 Model lift: from analytic to managerial insights 23

Data fold GLM CART RF GBM Losses

1 4,396,698 4,341,397 4,407,389 4,376,619 4,365,483
2 4,420,933 4,339,615 4,419,903 4,384,513 4,388,147
3 4,369,876 4,313,768 4,380,972 4,337,848 4,461,478
4 4,370,502 4,374,666 4,383,748 4,324,014 4,422,213
5 4,405,369 4,374,368 4,399,226 4,357,937 4,485,079
6 4,397,372 4,375,151 4,412,852 4,363,588 4,342,569

portfolio 26,360,750 26,118,966 26,404,091 26,144,519 26,464,970

GLM CART RF GBM

1.01 0.99 1.01 1.00
1.01 0.99 1.01 1.00
0.98 0.97 0.98 0.97
0.99 0.99 0.99 0.98
0.98 0.98 0.98 0.97
1.01 1.01 1.02 1.01

1.00 0.99 1.00 0.99

Table 5: Comparison of the predicted premiums and observed losses on portfolio level and by data fold.
We show the premium and loss totals (left) and the ratio of premiums to losses (right).

5.1 Tools to measure model lift

Suppose that an insurance company has a tariff structure P bench in place and a competitor
introduces a tariff structure P comp based on a new modeling technique or a different set of
rating variables. We define the relativity ri as the ratio of the competing premium to the
benchmark premium for policyholder i:

ri =
P comp
i

P bench
i

. (9)

A small relativity indicates a profitable policy which can potentially be lost to a competitor
offering a lower premium. A high relativity reveals an underpriced policy which could benefit
from better loss control measures such as renewal restrictions. These statements make the
assumption that P comp is a more accurate reflection of the true risk compared to P bench.

Loss ratio lift The loss ratio (LR) is the ratio of total incurred claim losses and total earned
premiums. Following Goldburd et al. (2016), we assess the loss ratio lift in the following way:

1. sort the policies from smallest to largest relativity ri;

2. bin the policies into groups containing the same amount of total exposure e;

3. within each bin, calculate the overall loss ratio using the benchmark premium P bench.

The bins should have loss ratios around 100% if the benchmark tariff is a technically accurate
reflection of the risk. However, an upward trend in the loss ratios would indicate that policies
with a lower (higher) premium under the competing tariff are those with a lower (higher) loss
ratio in the benchmark tariff, pointing out that the competing tariff better aligns the risk.

Double lift A double lift chart facilitates a direct comparison between two potential tariff
structures. Following Goldburd et al. (2016), this chart is created in the following way:

1. sort the policies from smallest to largest relativity ri;

2. bin the policies into groups containing the same amount of total exposure e;

3. within each bin, calculate the average actual loss amount (L) and the average predicted
pure premium for both the models (P bench and P comp);

4. within each bin, calculate the percentage error for both models as P/L− 1.

The best tariff structure is the one with the percentage errors closest to zero, indicating that
those premiums match the actual losses more closely.
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Gini index Frees et al. (2013) introduced the ordered Lorenz curve to compare the tariffs
P bench and P comp by analyzing the distribution of losses versus premiums, where both are
ordered by the relativities r from Eq. (9). The ordered Lorenz curve is defined as follows:(∑n

i=1 Li 1{Fn(ri) ≤ s}∑n
i=1 Li

,

∑n
i=1 P

bench
i 1{Fn(ri) ≤ s}∑n

i=1 P
bench
i

)
,

for s ∈ [0, 1] where Fn(ri) is the empirical cumulative distribution function of the relativities r.
This curve will coincide with the 45 degree line of equality when the technical pricing is done
right by the benchmark premium. However, the curve will be concave up when P comp is able to
spot tariff deficiencies in P bench. The cumulative distributions are namely taken from the most
overpriced policies towards the most underpriced policies in P bench. The Gini index, introduced
by Gini (1912) and computed as twice the area between the ordered Lorenz curve and the line
of equality, has a direct economic interpretation. A tariff structure P comp that yields a larger
Gini index is likely to result in a more profitable portfolio because of better differentiation
between good and bad risks. The insurer can decide to only retain the policies with a relativity
value below a certain threshold. Averaging this decision over all possible thresholds, Frees et al.
(2013) show that the average percentage profit for an insurer equals one half of the Gini index.

5.2 Adverse selection and profits

The panels in the left column of Figure 11 show the loss ratio lift charts for the regression
tree, random forest and gradient boosting machine respectively with the GLM as benchmark
tariff (i.e., the GLM premium is the denominator in Eq. (9)). All tree-based methods show
an increasing trend in the loss ratios. This implies that policies which would receive a lower
premium under the competing tariff, those in the first bins, are policies with favorable loss
ratios. At the same time, policies having a higher premium under the competing tariff, those
in the last bins, exhibit detrimental loss ratios. The tree-based techniques are therefore able
to spot deficiencies in the GLM benchmark tariff. One should not draw conclusions from these
graphs too fast however. The middle panels of Figure 11 show the loss ratio lifts for the GLM
with the three respective tree-based techniques as a benchmark tariff. Comparing these lift
charts side by side, we can observe that the upwards trend is now steeper in the cases of the
regression tree and random forest. Thus, the GLM is better in spotting deficiencies in those
tree-based tariffs compared to the other way around. The gradient boosting machine and GLM
result in rather complementary tariffs. The GLM is very good in the three middle relativity
bins, but the gradient boosting machine is clearly outperforming in the first and last bin.

These findings are confirmed by the double lift charts in the right panels of Figure 11. These
show the double lift charts obtained with the GLM as the benchmark tariff in the relativities.
The red and turquoise line respectively show the percentage error for the tree-based model and
the GLM. For both the regression tree and the random forest, the percentage error for the GLM
benchmark tariff is more closely centered around zero compared to the competitor percentage
error. We again notice the complementarity of the gradient boosting machine and GLM tariffs.
The percentage error for the gradient boosting machine is closer to zero for the first and last
relativity bin, but the GLM is closer to zero for the other three relativity bins.

The gradient boosting machine tariff clearly holds economic value over the GLM benchmark.
However, in the bottom left panel of Figure 11, we observe that the gradient boosting machine
is slightly over-correcting the GLM premium in the extreme ends of the tariff. The loss ratio
in the first bin is 0.84 while the average relativity in that bin is equal to 0.78. Likewise, the
average loss ratio in the last bin is 1.21 while the average relativity in that bin is equal to 1.30.
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Figure 11: Assessment of model lift for the regression tree (top), random forest (middle) and gradient
boosting machine (bottom). The left column shows the loss ratio lift for the tree-based
techniques with the GLM as benchmark. The middle column shows the loss ratio lift for
the GLM with the tree-based techniques as benchmark. The right column shows the double
lift chart for the tree-based techniques with the GLM as benchmark.

Table 6 shows a two-way comparison of Gini indices for the machine learning methods and
the GLM. The row names indicate the model generating the benchmark tariff structure P bench

while the column names indicate the model generating the competing tariff structure P comp.
The row-wise maximum values are indicated in bold. We observe that the gradient boosting
machine achieves the highest Gini index when the benchmark is either the GLM, the regression
tree or the random forest. When the gradient boosting machine serves as benchmark, the GLM
attains the highest Gini index. We use the mini-max strategy of Frees et al. (2013) where we
search for the benchmark model with the minimal maximum Gini index. In other words, we
look for the benchmark model with the lowest value in bold in Table 6. The gradient boosting
machine achieves this minimal maximum Gini index, indicating that this approach leads to a
tariff structure that is the least probable to suffer from adverse selection. Note that the GLM
tariff achieves the second place, before the random forest and regression tree.

Frees et al. (2013) explain that the average profit for an insurer is equal to half the Gini index.
Let us assume that the insurance company uses state-of-the-art GLMs to develop their current
tariff structure on this specific data. This implies that developing a competing tariff structure
with gradient boosting machines would result in an average profit of around 3.3% for the insurer.
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The average is taken over all possible decision-making strategies that the insurance company
can take to retain policies based on the relativities. Therefore, by following an optimal strategy,
the profit can even be higher for a specific choice of portfolio. We suspect that the improvement
in profits could be even greater if there were more explanatory variables in the data.

competitors: GLM CART RF GBM
b

en
ch

m
ar

k GLM 4.07 5.99 6.57
CART 10.86 10.10 12.02
RF 7.07 0.53 7.59
GBM 3.93 0.67 2.30

Table 6: Two-way comparison of Gini indices for the different tree-based techniques and GLM.

5.3 Solidarity and risk differentiation

From a social point of view, it is crucial for everybody to be able to buy insurance cover at a rea-
sonable price. A tariff structure that follows from a complex machine learning algorithm should
not lead to the “personalization of risk” with excessively high premiums for some policyholders.
Figure 12 shows violin plots of the annual (i.e., exposure equals one) premium distribution in
both the gradient boosting machine tariff P gbm and the GLM tariff P glm. We only consider
the gradient boosting machine because Sections 4.5 and 5.2 teach us that only this method
holds added value over the GLM. The left panel shows the annual premium amounts and we
observe that both distributions look very similar. The minimum, median and maximum pre-
mium is 43, 155 and 1138 Euro in P gbm and 41, 156 and 1230 Euro in P glm respectively. The
right panel shows the relative difference between both premiums, namely (P gbm−P glm)/P gbm.
The difference is centered around zero and for half the policyholders the difference lies in the
range [−12%,+12%]. This implies that, overall, P gbm and P glm trade off segmentation and risk
pooling in a similar way, thereby finding a balance between differentiation and solidarity. For a
small selection of policyholders, the gradient boosting machine leads to considerable discounts
compared to the GLM.
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Figure 12: Comparison of the annual premium distribution in the gradient boosting machine tariff
P gbm and the GLM tariff P glm: absolute premiums (left) and relative differences (right).

The gradient boosting machine and GLM result in similar premiums on a portfolio level (see
Table 5), but on a coarser scale, they could lead to different approaches for targeting specific
customer segments. Figure 13 are the relative premium differences between P gbm and P glm over
the age of the policyholder in the left panel and the power of the car in the right panel. The
blue dots show the average premium difference for policyholders with that specific characteristic,
e.g., all policyholders aged 25. We observe that younger policyholders obtain a slightly lower
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premium in the gradient boosting machine tariff, while senior policyholders obtain a slightly
higher premium compared to the GLM tariff. For middle aged policyholders there are some
fluctuations which can be explained by analyzing the age effects in Figure 6. For the group of
dots around the age of 75, P gbm gives an average 30% premium discount over P glm. Figure 6
shows that the age effect starts increasing before the age of 75 in the GLM (top left), but only
after the age of 75 for the gradient boosting machine (bottom right). Therefore, policyholders
around the age of 75 obtain a better deal in the gradient boosting machine tariff. In the right
panel of Figure 13, the premium differences increase roughly monotonically with the power of
the car. Low powered cars obtain a lower premium in P gbm while high powered cars get a lower
premium in P glm. In between the differences are close to zero, indicating that both tariffs treat
those cars in a similar fashion.
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Figure 13: Comparison of premium differences between P gbm and P glm over the age of the policyholder
(left) and the power of the car (right).

We conclude that gradient boosting machines can be a valuable tool for the insurer, while the
other tree-based techniques under investigation show little added value on our specific portfolio.
The gradient boosting machine is able to deliver a tariff that assesses the underlying risk in a
more accurate way, thereby guarding the insurer against adverse selection risks which eventually
can result in a profit. The gradient boosting machine also honored the principle of solidarity
in the portfolio, offering affordable insurance cover for all policyholders with premiums in the
same range as the benchmark GLM.

6 Conclusions and outlook

In this study, we have adapted tree-based machine learning to the problem of insurance pricing,
thereby leaving the comfort zone of both traditional ratemaking and machine learning. State-of-
the-art GLMs are compared to regression trees, random forests and gradient boosting machines.
These tree-based techniques can be used on insurance data, but care has to be taken with the
underlying statistical assumptions in the form of the loss function choice. This paper brings
multiple contributions to the existing literature. First, we develop complete tariff plans with
tree-based machine learning techniques for a real-life insurance portfolio. In this process, we
use the Poisson and gamma deviance because the classical squared error loss is not appropriate
for a frequency-severity problem. Second, our elaborate cross-validation scheme gives a well
thought and careful tuning procedure, allowing us to assess not only the performance of different
methods, but also the stability of our results across multiple data folds. Third, we go beyond
a purely statistical comparison and also focus on business metrics used in insurance companies
to evaluate different tariff strategies. Fourth, we spend a lot of attention on the interpretability
of the resulting models. This is a very important consideration for insurance companies within
the GDPR’s regime of algorithmic accountability. Fifth, our complete analysis is available in
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well-documented R functions, readily applicable to other data sets. This includes functions
for training, predicting and evaluating models, running the elaborate cross-validation scheme,
interpreting the resulting models and assessing the economic lift of these models. Sixth, we
extended the rpart package such that it is now possible to build regression trees with a gamma
deviance as loss function and random forest with both the Poisson and gamma deviance as loss
functions. This package is available at https://github.com/henckr/distRforest.

The gradient boosting machine is consistently selected as best modeling approach, both by
out-of-sample performance measures and model lift assessment criteria. This implies that an
insurer can prevent adverse selection and generate profits by considering this new modeling
framework. However, this might be impossible because of regulatory issues, e.g., filing require-
ments (see Appendix D). In that case, an insurance company can still learn valuable information
on how to form profitable portfolios from an internal, technical model and translate this to a
commercial product which is in line with all those requirements. A possible approach would
be to approximate a gradient boosting machine with a GLM, much in line with the strategy
to develop the benchmark pricing GLM in this study. The gradient boosting machine can be
used to discover the important variables and interactions between those variables, which can
then be included in a GLM for deployment. Although we present the tools to detect potentially
interesting variables and interactions, we leave for future work the building of a competitive
GLM inspired by the gradient boosting machine.
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A List of variables in the MTPL data

Claim information and exposure-to-risk measure
nclaims The number of claims filed by the policyholder.
amount The total amount claimed by the policyholder in euro.
expo The fraction of the year during which the insurer was exposed to the risk.

Categorical risk factors
coverage Type of coverage provided by the insurance policy: TPL, TPL+ or TPL++.

TPL = only third party liability,
TPL+ = TPL + limited material damage,
TPL++ = TPL + comprehensive material damage.

fuel Type of fuel of the vehicle: gasoline or diesel.
sex Gender of the policyholder: male or female.

(As from 21 December 2012, the European Court of Justice prohibited the use of gender in insurance tariffs

to avoid discrimination between males and females, known as the Test-Achats Ruling. Gender is therefore

only investigated for use within an internal technical tariff, but can not be used in a commercial product.)

use Main use of the vehicle: private or work.
fleet The vehicle is part of a fleet: yes or no.

Continuous risk factors
ageph Age of the policyholder in years.
power Horsepower of the vehicle in kilowatt.
agec Age of the vehicle in years.
bm Level occupied in the former compulsory Belgian bonus-malus scale.

From 0 to 22, a higher level indicates a worse claim history, see Lemaire (1995).
(This variable is typically not used as an a priori rating factor, but rather as an a posteriori correction in

a credibility framework or bonus-malus scheme. We however keep bm in the data to assess the amount of

information contained in this variable and to investigate the resulting effect.)

Spatial risk factor
long Longitude coordinate of the center of the municipality where the policyholder resides.
lat Latitude coordinate of the center of the municipality where the policyholder resides.

Table 7: Description of the available variables in the MTPL data.
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B Search grid for the tuning parameters

Regression tree
cp ∈ {1.0× 10−5, 1.1× 10−5, . . . , 1.0× 10−2}

γ ∈ {2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 20}∗

Random forest
T ∈ {100, 200, . . . , 5000}

m ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Gradient boosting machine
T ∈ {100, 200, . . . , 5000}

d ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Table 8: Search grid for the tuning parameters in the different tee-based machine learning techniques.
∗ Note that the γ tuning parameter is only used in frequency models for the Poisson deviance.

C Random forests for claim frequency data

The left and right panel of Figure 14 show the partial dependence plot of the age and spatial
effect in the claim frequency random forests, respectively. These effects are discussed in Sec-
tion 4.3. The six random forests for frequency contain rather different number of trees, ranging
from 100 to 5000 (see Table 3 earlier). However, these random forests exhibit very similar effects
for the age of the policyholder in Figure 14. This indicates that the underlying model structure
does not change drastically after including a sufficient number of trees.
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Figure 14: Effect of the age of the policyholder (left) and the municipality of residence (right) on
frequency in a random forest.
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D Filing requirements for pricing models

Insurance companies can be required by regulation to file their rating model on paper. This
section presents such frequency and severity models, trained on the data where D3 was kept as
hold-out test set. Section D.1 and D.2 show the GLMs and regression trees respectively. The
other five GLMs and regression trees are not shown due to lack of space. This filing requirement
is more difficult to satisfy for the ensemble methods, but it is possible by printing the individual
trees. However, this would result in a large amount of pages which is not very practical or
insightful for the regulator.

D.1 GLM

Coefficient SE (σ) t-stat p-value

Intercept −2.19 ∗∗∗ 0.03 −64.09 0.00
coverageTPL+ −0.10 ∗∗∗ 0.02 −5.46 0.00
coverageTPL++ −0.10 ∗∗∗ 0.03 −3.97 0.00
fueldiesel 0.18 ∗∗∗ 0.02 10.00 0.00
fleetyes −0.13 ∗∗∗ 0.05 −2.72 0.01
ageph[18,26) 0.32 ∗∗∗ 0.04 8.94 0.00
ageph[26,29) 0.16 ∗∗∗ 0.04 4.61 0.00
ageph[29,32) 0.11 ∗∗∗ 0.04 3.11 0.00
ageph[32,35) 0.02 0.04 0.46 0.65
ageph[50,54) −0.11 ∗∗∗ 0.03 −3.53 0.00
ageph[54,58) −0.05 0.04 −1.28 0.20
ageph[58,62) −0.23 ∗∗∗ 0.05 −4.93 0.00
ageph[62,73) −0.25 ∗∗∗ 0.04 −7.06 0.00
ageph[73,95] −0.21 ∗∗∗ 0.05 −4.42 0.00
bm[1,2) 0.14 ∗∗∗ 0.03 5.46 0.00
bm[2,3) 0.16 ∗∗∗ 0.04 4.48 0.00
bm[3,5) 0.37 ∗∗∗ 0.03 11.86 0.00
bm[5,7) 0.32 ∗∗∗ 0.03 11.39 0.00
bm[7,9) 0.48 ∗∗∗ 0.03 14.77 0.00
bm[9,11) 0.52 ∗∗∗ 0.03 17.30 0.00
bm[11,22] 0.75 ∗∗∗ 0.03 26.07 0.00
agec[9,14) 0.04 ∗ 0.02 1.91 0.06
agec[14,48] −0.02 0.03 −0.75 0.46

Significance codes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Coefficient SE (σ) t-stat p-value

power[10,35) −0.16 ∗∗∗ 0.04 −3.95 0.00
power[35,42) −0.05 0.03 −1.54 0.12
power[42,49) −0.02 0.03 −0.55 0.58
power[59,73) 0.02 0.02 0.89 0.37
power[73,92) 0.07 ∗ 0.04 1.76 0.08
power[92,243] 0.13 ∗∗∗ 0.05 2.88 0.00
latlong[-0.46,-0.36) −0.31 0.19 −1.62 0.11
latlong[-0.36,-0.26) −0.33 ∗∗∗ 0.06 −5.97 0.00
latlong[-0.26,-0.18) −0.20 ∗∗∗ 0.03 −5.86 0.00
latlong[-0.18,-0.12) −0.23 ∗∗∗ 0.04 −6.38 0.00
latlong[-0.12,-0.061) −0.13 ∗∗∗ 0.03 −4.41 0.00
latlong[-0.061,-0.017) −0.05 0.03 −1.62 0.11
latlong[0.025,0.077) 0.06 ∗∗ 0.03 2.42 0.02
latlong[0.077,0.14) 0.03 0.03 0.86 0.39
latlong[0.14,0.23) 0.04 0.03 1.29 0.20
latlong[0.23,0.33] 0.36 ∗∗∗ 0.03 12.37 0.00
agephpower-0.05 −0.04 0.06 −0.61 0.54
agephpower-0.02 −0.11 ∗∗∗ 0.04 −3.15 0.00
agephpower-0.01 −0.03 0.03 −0.79 0.43
agephpower0.01 0.00 0.03 −0.02 0.98
agephpower0.02 −0.04 0.05 −0.67 0.50
agephpower0.04 0.04 0.04 1.07 0.29

Significance codes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table 9: Frequency GLM specification, trained on the data where D3 was kept as hold-out test set.

Coefficient SE (σ) t-stat p-value

Intercept 7.31 ∗∗∗ 0.08 88.50 0.00
coverageTPL+ −0.23 ∗∗∗ 0.05 −4.62 0.00
coverageTPL++ 0.18 ∗∗ 0.07 2.54 0.01
ageph[18,25) 0.13 0.11 1.23 0.22
ageph[25,28) −0.02 0.10 −0.15 0.88
ageph[28,30) 0.08 0.11 0.70 0.49
ageph[30,33) 0.07 0.10 0.65 0.52
ageph[33,36) −0.19 ∗ 0.10 −1.87 0.06
ageph[36,39) −0.26 ∗∗ 0.10 −2.57 0.01
ageph[39,42) −0.19 ∗ 0.10 −1.84 0.07
ageph[42,45) −0.01 0.10 −0.12 0.91
ageph[49,52) −0.02 0.10 −0.21 0.83
ageph[52,55) −0.13 0.11 −1.18 0.24
ageph[55,61) −0.17 ∗ 0.10 −1.69 0.09

Significance codes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Coefficient SE (σ) t-stat p-value

ageph[61,66) −0.20 ∗ 0.11 −1.73 0.08
ageph[66,72) −0.04 0.11 −0.33 0.75
ageph[72,95] 0.11 0.11 0.93 0.35
agec[0,2) 0.22 ∗∗ 0.11 2.09 0.04
agec[2,3) −0.11 0.09 −1.11 0.27
agec[3,4) −0.08 0.10 −0.82 0.41
agec[4,6) −0.08 0.07 −1.09 0.28
agec[6,7) −0.10 0.08 −1.22 0.22
agec[7,8) −0.10 0.09 −1.21 0.23
agec[10,11) −0.12 0.09 −1.33 0.18
agec[11,12) −0.05 0.09 −0.52 0.60
agec[12,14) −0.14 ∗ 0.08 −1.69 0.09
agec[14,48] −0.01 0.09 −0.06 0.95

Significance codes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table 10: Severity GLM specification, trained on the data where D3 was kept as hold-out test set.
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D.2 Regression tree
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Figure 15: Regression trees for claim frequency (big, top left) and severity (small, bottom right), both
trained on the data where D3 was kept as hold-out test set.
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