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Lee and Lin (2012) introduce the class of multivariate mixtures of
Erlang distributions (MME) as a generalization of the class of
univariate mixture of Erlang distributions to model dependent losses.
The authors show how this multivariate extension retains the
desirable properties of flexibility (denseness) on the one hand and
tractability at the other hand (see also Willmot and Woo, 2014). 

A d-variate Erlang mixture is defined as a mixture such that each
mixture component is the joint distribution of d independent Erlang
distributions with a common scale parameter θ > 0. The dependence
structure is captured by the combination of the positive integer shape
parameters of the Erlangs in each dimension. 

We denote the positive integer shape parameters of the jointly
independent Erlang distributions in a mixture component by the
vector r = (r1, … ,rd ) and the set of all shape vectors with non-zero
weight by R. The mixture weights are denoted by α = {αr | r ∈R } and
must satisfy αr ≥ 0 and �r∈R αr = 1. The density of a d-variate
Erlang mixture evaluated in x = (x1, … ,xd ) with xj > 0 for j = 1, … ,d
can then be written as

d                                       d    x j
rj -1 e -xj/θ

f (x;α,r,θ ) =�αr f (x;r,θ ) =�αr � f (xj;rj,θ ) =�αr �        .
r∈R r∈R j=1                      r∈R j=1 θ rj (rj - 1)!

The two main novelties we present in Verbelen et al. (2015a) are (i)
an extension of the fitting procedure of MME to be able to deal with
censored and truncated data and (ii) a computationally more efficient
initialization and adjustment strategy for the shape parameter vectors
in order to make the estimation procedure more flexible and

effective. The improvements (i) and (ii) allow us to analyze realistic
data with diverse forms of dependence.

Here, we illustrate the developed fitting technique with an additional
actuarial science example, not discussed in the paper. We consider an
insurance dataset, collected by the US Insurance Services Office (ISO),
comprising of 1500 non-life insurance claims of which both the
indemnity payment or loss as well as the allocated loss adjustment
expense (ALAE) are observed, both in USD. ALAE is the additional
expense associated with the settlement of the claim, e.g. lawyers'
fees , experts' opinions, and claims investigation expenses. For each
claim, we also recorded the policy limit of the contract, due to which
34 claims are right censored. Even though only 34 of the 1500
observations are right censored, the censoring cannot be neglected
and has to be taken into account when estimating the joint
distribution. This dataset is also studied in e.g. Frees and Valdez
(1998); Klugman and Parsa (1999); Beirlant et al. (2004); Denuit et al.
(2006a,b).

Applying our proposed methodology allows us to describe the joint
distribution of the losses and the expenses using an MME, either on
the original or on the log scale. In Figure 2 we show the results on the
log scale for the best-fitting MME with 8 mixture components. The
marginals as well as the dependence structure seem to be captured
appropriately. We further use this fit to estimate the conditional
distribution of ALAE given the value of the claim loss. Besides, we 
use the tractability of MME to derive explicit expression of the net
reinsurance premiums of an excess-of-loss reinsurance layer C xs R
for various levels of the retention R and the limit L = R + C.
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Modeling data on claim sizes is crucial when pricing
insurance products. Insurance data are often modeled
using a parametric distribution such as a gamma,
lognormal or Pareto distribution. The usual way to
proceed in loss modeling, pricing and reserving is to
calibrate the data using several of these distributions
and then select, among these, the most appropriate
model based on an information criterion. These classes
of distributions may however not always be flexible
enough in terms of the possible shapes of their
members in order to obtain a satisfying fit (e.g.
multimodality). Furthermore, using these distributions
in aggregate loss models does not lead to an analytical
form for the corresponding aggregate loss distribution.
Evaluation of the model (e.g. the calculation of risk
measures) is therefore based on simulation algorithms.
Ideally, loss models require on the one hand the
flexibility of nonparametric density estimation
techniques to describe the insurance losses and on the
other hand the feasibility to analytically quantify the
risk, which is exactly what mixtures of Erlangs have to
offer. 

A mixture of M Erlang distributions with common scale
parameter θ > 0 has density

where the positive integers r = (r1, … ,rM ) with 
r1< � <rM are the shape parameters of the Erlang
distributions and α = (α1,…,αM ) with αj > 0 and

� j=1
αj = 1 are the weights used in the mixture. The

class of mixtures of Erlang distributions is very flexible
in terms of the possible shapes of its members. It has
been shown that this class is dense in the space of
positive distributions. At the same time, it is possible to
work analytically with this class leading to explicit
expressions of many quantities of interest (see Klugman
et al., 2013; Willmot and Lin, 2011; Willmot and Woo,
2007). 

In actuarial science, data are often incomplete due to
censoring and truncation. Data are censored in case you
only observe an interval in which a data point is lying
without knowing its exact value. Truncation entails that
it is only possible to observe the data of which the
values lie in a certain range. Policy modifications such
as deductibles lead to left truncated losses and policy
limits to right censored claim sizes. Left truncation is
also present in life insurance where members of
pension schemes and holders of insurance contracts
only enter a portfolio at a certain adult age. Censored
and truncated data occur in the context of claim
reserving as well (see Antonio and Plat, 2014). Indeed,
the reserving actuary wants to predict the future
development of claims when setting aside reserves at
the present moment and has to deal with claims being
reported but not yet settled (RBNS) and claims being
incurred but not yet reported (IBNR). In operational
risk, data are left truncated as they are only recorded in
case they exceed a certain threshold. 

Interest however is in the underlying distribution of the
uncensored and untruncated data instead of the
observed censored and/or truncated data. Hence the
censoring and truncation has to be accounted for in the
analysis. In Verbelen et al. (2015b), we develop an
extension of the fitting mixtures of Erlangs to censored
and truncated data. We implement the fitting
procedure using R1 and show how mixtures of Erlangs
can be used to adequately represent any univariate
distribution in a wide variety of applications where
data are allowed to be censored and truncated.

One of the real world datasets we analyze is the Secura
Re dataset discussed in Beirlant et al. (2004). The data
contain information on 371 automobile claims from
1988 until 2001 gathered from several European
insurance companies. The data are uncensored, but left
truncated at 1200000 since a claim is only reported to
the reinsurer if the claim size is at least as large as
1200000 euro. The use of mixtures of Erlangs provides
a smooth fit of the insurance losses (see Figure 1) as
well as an analytical price for an excess-of-loss
reinsurance contract. 

L O S S  M O D E L I N G  U S I N G  M I X T U R E S  O F
E R L A N G S

At the 2nd R in insurance conference on July 14, 2014 at Cass Business School in London, 
Roel Verbelen presented his research findings on a class of flexible distributions called
mixtures of Erlangs. In several applications in the context of loss modelling, he demonstrated
his implemented fitting procedure and graphical tools built in R.
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Figure 1: Parameter estimates and graphical goodness-of-fit plots of the fitted mixture of 2 Erlangs for the Secura Re dataset.
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Figure 2: Graphical goodness-of-fit plots of the fitted MME with 8 mixture components for
the Loss ALAE dataset on the log scale.
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