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Abstract

We discuss how to fit mixtures of Erlangs to censored and truncated data by iteratively using
the EM algorithm. Mixtures of Erlangs form a very versatile, yet analytically tractable, class
of distributions making them suitable for loss modeling purposes. The effectiveness of the
proposed algorithm is demonstrated on simulated data as well as real data sets.
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1 Introduction

The class of mixtures of Erlang distributions with a common scale parameter is very flexible
in terms of the possible shapes of its members. Tijms (1994, p. 163) shows that mixtures of
Erlangs are dense in the space of positive distributions in the sense that there always exists a
series of mixtures of Erlangs that weakly converges, i.e. converges in distribution, to any positive
distribution. As such, any continuous distribution can be approximated by a mixture of Erlang
distributions to any accuracy. Furthermore, via direct manipulation of the Laplace transform,
a wide variety of distributions whose membership in this class is not immediately obvious can
be written as a mixture of Erlangs. The class of mixtures of Erlangs with a common scale is
also closed under mixture, convolution and compounding. At the same time, it is possible to
work analytically with this class leading to explicit expressions for e.g. the Laplace transform,
the hazard rate, a Tail-Value-at-Risk (TVAR) and stop-loss moments. A quantile or a Value-
at-Risk (VaR) can be obtained by numerically inverting the cumulative distribution function.
Klugman et al. (2013), Willmot and Lin (2011) and Willmot and Woo (2007) give an overview
of these analytical and computational properties of mixtures of Erlangs.
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Mixtures of Erlang distributions have received most attention in the field of actuarial science.
Modeling data on claim sizes is crucial when pricing insurance products. Actuarial models help
insurance companies to assess the risk associated with the portfolio, to set the level of premiums
(Frees and Valdez, 2008) and reserves (Antonio and Plat, 2014), to determine optimal reinsurance
levels (Beirlant et al., 2004) or to determine capital requirements for solvency purposes (Bolancé
et al., 2012). Insurance data are often modeled using a parametric distribution such as a gamma,
lognormal or Pareto distribution. The usual way to proceed in loss modeling, pricing and
reserving is to calibrate the data using several of these parametric distributions and then select,
among these, the most appropriate model based on a model selection tool (Klugman and Rioux,
2006). These classes of distributions may however not always be flexible enough in terms of
the possible shapes of their members in order to obtain a satisfying fit (e.g. in the presence
of multimodal data) and resulting models become intractable when aggregating risks in an
insurance portfolio or arising from multiple lines of losses. Ideally, it would be useful to have
a single approach to fitting loss models (Klugman and Rioux, 2006) with on the one hand the
flexibility of nonparametric density estimation techniques to describe the insurance losses and
on the other hand the feasibility to analytically quantify the risk. This is exactly what the
class of mixtures of Erlangs has to offer. In particular, using these distributions in aggregate
loss models leads to an analytical form of the corresponding aggregate loss distribution, which
avoids the need for simulations to evaluate the model.

Mixture models are often used to reflect the heterogeneity in a population consisting of multiple
groups or clusters (McLachlan and Peel, 2001). In some applications, these clusters can be
physically identified and used to interpret the fitted distributions. This is however not the
approach we follow; the components in the mixture will not be identified with existing groups.
Mixtures of Erlangs are discussed here for their great flexibility in modeling data and should
be regarded as a semiparametric density estimation technique. The densities in the mixture
are parametrically specified as Erlangs, whereas the associated weights form the nonparametric
part. The number of Erlangs in the mixture with non-zero weights can be viewed as a smoothing
parameter. Mixtures of Erlangs have much of the flexibility of nonparametric approaches and
furthermore allow for tractable results.

The expectation-maximization (EM) algorithm, first introduced by Dempster et al. (1977), is
an iterative method used to compute maximum likelihood (ML) estimates when the data can be
viewed as being incomplete and direct maximization of the incomplete data likelihood is either
not desirable or not possible (McLachlan and Krishnan, 2008). The EM algorithm is particularly
useful in estimating the parameters of a finite mixture. The clue is to view data from a mixture
as being incomplete since the associated component-label vectors are not available (McLachlan
and Peel, 2001).

Lee and Lin (2010) iteratively use the EM algorithm (Dempster et al., 1977) for finite mixtures
to estimate the parameters of a mixture of Erlang distributions with a common scale parameter.
For a specified fixed set of shapes, the E- and M-step can be solved analytically without using
any optimization method. This makes the EM algorithm for mixtures of Erlangs a pure iterative
algorithm which is therefore simple, effective and easy to implement. The initialization is based
on Tijm’s proof of the denseness property of mixtures of Erlangs (Tijms, 1994, p. 163) which
ensures good starting values and fast convergence. Since the number of Erlangs in the mixture
and the corresponding shape parameters are pre-fixed and hence not estimated, Lee and Lin
(2010) propose an adjustment procedure to identify the ‘optimal’ number of Erlang distributions
and the ‘optimal’ shape parameters of these distributions in the mixture. The authors illustrate
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the flexibility of mixtures of Erlangs by generating data from parametric models (such as the
uniform, lognormal, and generalized Pareto distribution) and by approximating the underlying
distribution of this sample using a mixture of Erlangs. They further demonstrate the usefulness
of mixtures of Erlangs in the context of quantitative risk management for the insurance business.
However, modeling censored and/or truncated losses is not covered by the approach in Lee and
Lin (2010).

In many practical problems data are censored and/or truncated, for example, due to the way how
the data is collected or measured or by the design of the experiment. Censoring entails that you
only know in which interval an observation of a variable lies without knowing the exact value
while truncation implies that you only observe values that lie within a given range. Interest
however is in the underlying distribution of the uncensored and untruncated data instead of
the observed censored and/or truncated data. Hence the censoring and truncation has to be
accounted for in the analysis.

Survival analysis is the most common application in which data are often censored and truncated.
A typical example is a medical study in which one follows patients over a period of time. In
case the event of interest has not yet occurred before the end of the study, the patient drops out
of the study or dies from another cause, independent of the cause of interest, the event time is
right censored. In case the event of interest is known to have occurred between two dates, but
the precise date is not known, the event time is interval censored. In actuarial science, insurance
losses are often censored and truncated due to policy modifications such as deductibles (left
truncation) and policy limits (right censoring). Left truncation is also present in life insurance
where members of pension schemes and holders of insurance contracts only enter a portfolio at
a certain adult age. Censored and truncated data occur in the context of claim reserving as well
(Antonio and Plat, 2014). Indeed, the reserving actuary wants to predict the future development
of claims when setting aside reserves at the present moment and has to deal with claims being
reported but not yet settled (RBNS) and claims being incurred but not yet reported (IBNR).
In operational risk, data are left truncated as they are only recorded in case they exceed a
certain threshold. Badescu et al. (2015) use the EM algorithm to fit the correlated frequencies
of such left truncated operational loss data using an Erlang-based multivariate mixed Poisson
distribution.

Motivated by the large number of areas where censored and truncated data are encountered,
the objective in this paper is to develop an extension of the iterative EM algorithm of Lee
and Lin (2010) for fitting mixtures of Erlangs with common scale parameter to censored and
truncated data. The traditional way of dealing with (grouped and) truncated data using the
EM algorithm involves treating the unknown number of truncated observations as a random
variable and including it into the complete data vector (Dempster et al., 1977; McLachlan
and Krishnan, 2008, p. 66; McLachlan and Peel, 2001, p. 257; McLachlan and Jones, 1988).
We do not follow this approach and rather only include the uncensored observations and the
component-label vectors in the complete data vector as is also done in Lee and Scott (2012).
The fitting procedure is applicable to a wide range of applications. We demonstrate its use in
actuarial science and econometrics. Our R implementation and additional examples from other
domains such as biostatistics are available online at www.feb.kuleuven.be/roel.verbelen.

In the following, we briefly introduce mixtures of Erlangs with a common scale parameter in
Section 2. The adjusted EM algorithm, able to deal with censored and truncated data, is
presented in Section 3. The procedures used to initialize the parameters, to adjust the shapes
of the Erlangs in the mixture and to choose the number of components are discussed in Section
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4. Examples follow in Section 5 and Section 6 concludes.

2 Mixtures of Erlangs with a common scale parameter

The Erlang distribution is a positive continuous distribution with density function

f(x; r, θ) =
xr−1e−x/θ

θr(r − 1)!
for x > 0 , (1)

where r, a positive integer, is the shape parameter and θ > 0 the scale parameter (the inverse
λ = 1/θ is called the rate parameter). The cumulative distribution function is obtained by
integrating (1) by parts r times

F (x; r, θ) =

∫ x

0

zr−1e−z/θ

θr(r − 1)!
dz = 1−

r−1∑
n=0

e−x/θ
(x/θ)n

n!
. (2)

Following Lee and Lin (2010) we consider mixtures of M Erlang distributions with common
scale parameter θ > 0 and having density

f(x;α, r, θ) =

M∑
j=1

αj
xrj−1e−x/θ

θrj (rj − 1)!
=

M∑
j=1

αjf(x; rj , θ) for x > 0 , (3)

where the positive integers r = (r1, . . . , rM ) with r1 < . . . < rM are the shape parameters of the
Erlang distributions and α = (α1, . . . , αM ) with αj > 0 and

∑M
j=1 αj = 1 are the weights used

in the mixture. Similarly, the cumulative distribution function can be written as a weighted
sum of terms (2) or (22).

Tijms (1994, p. 163) shows that the class of mixtures of Erlang distributions with a common
scale parameter is dense in the space of distributions on R+. The formulation of the Theorem is
given in Appendix A. Lee and Lin (2010) give an alternative proof using characteristic functions.

3 The EM algorithm for censored and truncated data

Lee and Lin (2010) formulate the EM algorithm customized for fitting mixtures of Erlangs with
a common scale parameter to complete data. In an Addendum available online1, we work out
the details of this approach using a notation inspired by McLachlan and Peel (2001) and Lee
and Scott (2012), based on zero-one component indicators.

Here, we construct an adjusted EM algorithm which is able to deal with censored and truncated
data. We represent a censored sample truncated to the range [tl, tu] by X = {(li, ui)| i = 1, . . . , n},
where tl and tu represent the lower and upper truncation points, li and ui the lower and upper
censoring points and tl 6 li 6 ui 6 tu for i = 1, . . . , n. tl = 0 and tu = ∞ mean no truncation
from below and above, respectively. The censoring status is determined as follows:

1See www.feb.kuleuven.be/roel.verbelen
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Uncensored: tl 6 li = ui =: xi 6 tu

Left Censored: tl = li < ui < tu

Right Censored: tl < li < ui = tu

Interval Censored: tl < li < ui < tu

For example, when the truncation interval equals [tl, tu] = [0, 10], an uncensored observation
at 1 gets denoted by (li, ui) = (1, 1), an observation left censored at 2 by (li, ui) = (0, 2), an
observation right censored at 3 by (li, ui) = (3, 10) and an observation censored between 4 and
5 by (li, ui) = (4, 5). Thus, li and ui should be seen as the lower and upper endpoints of the
interval that contains observation i.

The parameter vector to be estimated is Θ = (α, θ). The number of Erlangs M in the mixture
and the corresponding positive integer shapes r are fixed. The value of M is, in most applica-
tions, however unknown and has to be inferred from the available data, along with the shape
parameters, see Section 4. The portion of the likelihood containing the unknown parameter
vector Θ is given by

L(Θ;X ) =
∏
i∈U

f(xi; Θ)

F (tu; Θ)− F (tl; Θ)

∏
i∈C

F (ui; Θ)− F (li; Θ)

F (tu; Θ)− F (tl; Θ)

where U is the subset of observations in {1, . . . , n} which are uncensored and C is the subset of
left, right and interval censored observations. In case there is no truncation, i.e. [tl, tu] = [0,∞],
the contribution of a left censored observation to the likelihood equals F (ui; Θ) since li = 0, of
a right censored observation 1− F (li; Θ) with ui =∞, and of an interval censored observation
F (ui; Θ)− F (li; Θ).

The corresponding log likelihood is

l(Θ;X ) =
∑
i∈U

ln

 M∑
j=1

αjf(xi; rj , θ)

+
∑
i∈C

ln

 M∑
j=1

αj (F (ui; rj , θ)− F (li; rj , θ))


− n ln

 M∑
j=1

αj

(
F (tu; rj , θ)− F (tl; rj , θ)

) , (4)

which is difficult to optimize numerically.

3.1 Truncated mixture of Erlangs

The probability density function evaluated in an uncensored observation xi after truncation
(tl, tu) is given by

f(xi; t
l, tu,Θ) =

f(xi; Θ)

F (tu; Θ)− F (tl; Θ)

=
M∑
j=1

αj ·
f(xi; rj , θ)

F (tu; Θ)− F (tl; Θ)

=

M∑
j=1

αj ·
F (tu; rj , θ)− F (tl; rj , θ)

F (tu; Θ)− F (tl; Θ)
· f(xi; rj , θ)

F (tu; rj , θ)− F (tl; rj , θ)
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=
M∑
j=1

βjf(xi; t
l, tu, rj , θ) , (5)

for tl 6 xi 6 tu and zero otherwise. This is again a mixture with mixing weights βj and
component density functions given by, respectively,

βj = αj ·
F (tu; rj , θ)− F (tl; rj , θ)

F (tu; Θ)− F (tl; Θ)
(6)

and

f(xi; t
l, tu, rj , θ) =

f(xi; rj , θ)

F (tu; rj , θ)− F (tl; rj , θ)
. (7)

The component density functions f(xi; t
l, tu, rj , θ) are truncated versions of the original com-

ponent density functions f(xi; rj , θ). The weights βj are obtained by reweighting the original
weights αj by means of the probabilities of the corresponding component to lie in the truncation
interval.

3.2 Construction of the complete data vector

The EM algorithm provides a computationally easy way to fit this finite mixture to the censored
and truncated data. The main clue is to regard the censored sample X as being incomplete since
the uncensored observations x = (x1, . . . , xn) and their associated component-indicator vectors
z = (z1, . . . ,zn) with

zij =

{
1 if observation xi comes from jth component density f(xi; t

l, tu, rj , θ)

0 otherwise
(8)

for i = 1, . . . , n and j = 1, . . . ,M , are not available. The component-label vectors z1, . . . ,zn
are distributed according to a multinomial distribution consisting of one draw on M categories
with probabilities β1, . . . , βM where

P (Zi = zi) = βzi11 . . . , βziMM

for i = 1, . . . , n with zij equal to 0 or 1 and
∑M

j=1 zij = 1. We write

Z1, . . . ,Zn
i.i.d.∼ MultM (1,β) .

Hence, the latent variablesZi reveal which component density generated observation xi. Whereas
the unconditional truncated probability density function is given by (5), the conditional trun-
cated probability density function of Xi given Zij = 1 is given by (7).

The complete data vector, Y = (x1, . . . , xn, z) = {(xi, zi)|i = 1 . . . n}, contains all uncensored
observations xi and their corresponding mixing component vector zi. The log likelihood of the
complete sample Y then becomes

l(Θ;Y) =
n∑
i=1

M∑
j=1

zij ln
(
βjf(xi; t

l, tu, rj , θ)
)
, (9)

which has a simpler form than the incomplete log likelihood (4) as it does not contain logarithms
of sums. The EM algorithm deals with the censored and truncated data from the mixture of
Erlangs with common scale in the following steps.
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3.3 Initial step

An initial guess for Θ is needed to start the algorithm. The closer the starting value is to the true
maximum likelihood estimator, the faster the algorithm will converge. Parameter initialization
is often the sore point of an EM implementation and the study of good initial estimates is often
not feasible and disregarded.

For mixtures of Erlangs however, the denseness property (see Tijms (1994, p. 163) and Appendix
A) provides an excellent way of coming up with good initial estimates. In the initial step, we
deal with the censoring and truncation in a crude manner. We switch to an initializing dataset,
denoted by d, in which we treat the left and right censored data points as being observed, i.e. we
use ui and li, respectively, and we replace the interval censored data points with the midpoint,
i.e. we use (li + ui)/2. Based on this initial data, we initialize the parameters θ and α as:

θ(0) =
max(d)

rM
and α

(0)
j =

∑n
i=1 I

(
rj−1θ

(0) < di 6 rjθ
(0)
)

n
, for j = 1, . . . ,M , (10)

with r0 = 0 for notational convenience. Inspired by Tijms’s formulation of the denseness prop-
erty, the initial scale θ(0) is chosen such that θ(0)rM equals the maximum data point and the
initial weights αj for j = 1, 2, . . . ,M are set to be the relative frequency of data points in the
interval (rj−1θ

(0), rjθ
(0)]. The truncation is only taken into account to transform the initial

values for α into the initial values for β via (6).

3.4 E-step

In the kth iteration of the E-step, we take the conditional expectation of the complete log
likelihood (9) given the incomplete data X and using the current estimate Θ(k−1) for Θ with

Q(Θ; Θ(k−1)) = E(l(Θ;Y) | X ; Θ(k−1))

= E

∑
i∈U

M∑
j=1

Zij ln
(
βjf(xi; t

l, tu, rj , θ)
)∣∣∣∣∣∣X ; Θ(k−1)


+ E

∑
i∈C

M∑
j=1

Zij ln
(
βjf(Xi; t

l, tu, rj , θ)
)∣∣∣∣∣∣X ; Θ(k−1)


= Qu(Θ; Θ(k−1)) +Qc(Θ; Θ(k−1)) , (11)

where Qu(Θ; Θ(k−1)) and Qc(Θ; Θ(k−1)) are the conditional expectations of the uncensored and
censored part of the complete log likelihood, respectively.

Uncensored case. The truncation does not complicate the computation of the expectation
for the uncensored data as

Qu(Θ; Θ(k−1)) = E

∑
i∈U

M∑
j=1

Zij ln
(
βjf(xi; t

l, tu, rj , θ)
)∣∣∣∣∣∣X ; Θ(k−1)


=
∑
i∈U

M∑
j=1

E
[
Zij | X ; Θ(k−1)

]
ln
(
βjf(xi; t

l, tu, rj , θ)
)
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=
∑
i∈U

M∑
j=1

uz
(k)
ij ln

(
βjf(xi; t

l, tu, rj , θ)
)

=
∑
i∈U

M∑
j=1

uz
(k)
ij

[
ln(βj) + (rj − 1) ln(xi)−

xi
θ
− rj ln(θ)

− ln((rj − 1)!)− ln
(
F (tu; rj , θ)− F (tl; rj , θ)

)]
, (12)

with, for i ∈ U and j = 1, . . . ,M ,

uz
(k)
ij = P (Zij = 1 | xi, tl, tu; Θ(k−1))

=
β
(k−1)
j f(xi; t

l, tu, rj , θ
(k−1))∑M

m=1 β
(k−1)
m f(xi; tl, tu, rm, θ(k−1))

(7)
=

β
(k−1)
j f(xi; rj , θ

(k−1))/
(
F (tu; rj , θ

(k−1))− F (tl; rj , θ
(k−1))

)∑M
m=1 β

(k−1)
m f(xi; rm, θ(k−1))/

(
F (tu; rm, θ(k−1))− F (tl; rm, θ(k−1))

)
(6)
=

α
(k−1)
j f(xi; rj , θ

(k−1))∑M
m=1 α

(k−1)
m f(xi; rm, θ(k−1))

, (13)

where we plugged in definitions (6) and (7) of the weights and components of the truncated
mixture in the last two equations in order to express this probability in terms of the original
mixing weights and mixing components. The E-step for the uncensored part only requires the

computation of the posterior probabilities uz
(k)
ij that observation i belongs to the jth component

in the mixture, which remains the same in the truncated case and in the untruncated case.

Censored case. Denote by cz
(k)
ij the posterior probability that observation i belongs to the

jth component in the mixture for a censored data point. Then

Qc(Θ; Θ(k−1)) = E

∑
i∈C

M∑
j=1

Zij ln
(
βjf(Xi; t

l, tu, rj , θ)
)∣∣∣∣∣∣X ; Θ(k−1)


=
∑
i∈C

E

 M∑
j=1

Zij ln
(
βjf(Xi; t

l, tu, rj , θ)
)∣∣∣∣∣∣ li, ui, tl, tu; Θ(k−1)


=
∑
i∈C

M∑
j=1

cz
(k)
ij E

[
ln
(
βjf(Xi; t

l, tu, rj , θ)
)∣∣∣Zij = 1, li, ui, t

l, tu; θ(k−1)
]

=
∑
i∈C

M∑
j=1

cz
(k)
ij

[
ln(βj) + (rj − 1)E

(
ln(Xi)

∣∣∣Zij = 1, li, ui, t
l, tu; θ(k−1)

)
− 1

θ
E
(
Xi

∣∣∣Zij = 1, li, ui, t
l, tu; θ(k−1)

)
− rj ln(θ)− ln((rj − 1)!)

− ln
(
F (tu; rj , θ)− F (tl; rj , θ)

)]
(14)
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where we used the tower rule in the third equality. Again using Bayes’ rule, we can compute
these posterior probabilities, for i ∈ C and j = 1, . . . ,M , as

cz
(k)
ij = P (Zij = 1 | li, ui, tl, tu; Θ(k−1))

=
β
(k−1)
j

(
F (ui; t

l, tu, rj , θ
(k−1))− F (li; t

l, tu, rj , θ
(k−1))

)∑M
j=1 β

(k−1)
j

(
F (ui; tl, tu, rj , θ(k−1))− F (li; tl, tu, rj , θ(k−1))

)
=

β
(k−1)
j

(
F (ui; rj , θ

(k−1))− F (li; rj , θ
(k−1))

)
/
(
F (tu; rj , θ

(k−1))− F (tl; rj , θ
(k−1))

)∑M
j=1 β

(k−1)
j

(
F (ui; rj , θ(k−1))− F (li; rj , θ(k−1))

)
/
(
F (tu; rj , θ(k−1))− F (tl; rj , θ(k−1))

)
(6)
=

α
(k−1)
j

(
F (ui; rj , θ

(k−1))− F (li; rj , θ
(k−1))

)∑M
j=1 α

(k−1)
j

(
F (ui; rj , θ(k−1))− F (li; rj , θ(k−1))

) . (15)

The expression for the posterior probability in the censored case has the same form as in the
uncensored case (13), but with the densities replaced by the probabilities in between the upper
and lower censoring points. The terms in (14) for Qc(Θ; Θ(k−1)) containing E(ln(Xi)|Zij =
1, li, ui, t

l, tu; θ(k−1)) will not play a role in the EM algorithm as they do not depend on the
unknown parameter vector Θ. The E-step requires the computation of the expected value of Xi

conditional on the censoring times and the mixing component Zi for the current value Θ(k−1)

of Θ:

E
(
Xi

∣∣∣Zij = 1, li, ui, t
l, tu; θ(k−1)

)
=

∫ ui

li

x
f(x; rj , θ

(k−1))

F (ui; rj , θ(k−1))− F (li; rj , θ(k−1))
dx

=
rjθ

(k−1)

F (ui; rj , θ(k−1))− F (li; rj , θ(k−1))

∫ ui

li

xrje−x/θ
(k−1)(

θ(k−1)
)rj+1

rj !
dx

=
rjθ

(k−1) (F (ui; rj + 1, θ(k−1))− F (li; rj + 1, θ(k−1))
)

F (ui; rj , θ(k−1))− F (li; rj , θ(k−1))
,

for i ∈ C and j = 1, . . . ,M , which has a closed-form expression.

3.5 M-step

In the M-step, we maximize the expected value (11) of the complete data log likelihood obtained
in the E-step with respect to the parameter vector Θ over all (β, θ) with βj > 0,

∑M
j=1 βj = 1

and θ > 0. The expressions for Qu(Θ; Θ(k−1)) and Qc(Θ; Θ(k−1)) are given in (12) and (14),
respectively. The maximization over the mixing weights β, requires the maximization of

∑
i∈U

M∑
j=1

uz
(k)
ij ln(βj) +

∑
i∈C

M∑
j=1

cz
(k)
ij ln(βj) ,

which can be done analogously as in the uncensored case (see Addendum online). We implement
the restriction

∑M
j=1 βj = 1 by setting βM = 1 −

∑M−1
j=1 βj . Setting the partial derivatives at

β(k) equal to zero implies that the optimizer satisfies

β
(k)
j =

∑
i∈U

uz
(k)
ij +

∑
i∈C

cz
(k)
ij∑

i∈U
uz

(k)
iM +

∑
i∈C

cz
(k)
iM

β
(k)
M for j = 1, . . . ,M − 1 .
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By the sum constraint we have

β
(k)
M =

∑
i∈U

uz
(k)
iM +

∑
i∈C

cz
(k)
iM

n
,

and the same form also follows for j = 1, . . . ,M − 1:

β
(k)
j =

∑
i∈U

uz
(k)
ij +

∑
i∈C

cz
(k)
ij

n
for j = 1, . . . ,M . (16)

The new estimate for the prior probability βj in the truncated mixture is the average of the
posterior probabilities of belonging to the jth component in the mixture. The optimizer indeed
corresponds to a maximum since the matrix of second order partial derivatives is negative definite
matrix with a compound symmetry structure.

In order to maximize Q(Θ; Θ(k−1)) with respect to θ, we set the first order partial derivatives
equal to zero (see Appendix B). This leads to the following M-step equation for θ:

θ(k) =

(∑
i∈U xi +

∑
i∈C E

(
Xi

∣∣li, ui, tl, tu; θ(k−1)
))
/n− T (k)∑M

j=1 β
(k)
j rj

, (17)

with

T (k) =
M∑
j=1

β
(k)
j

(
tl
)rj e−tl/θ − (tu)rj e−t

u/θ

θrj−1(rj − 1)! (F (tu; rj , θ)− F (tl; rj , θ))

∣∣∣∣∣∣
θ=θ(k)

.

As in the uncensored case, the new estimate θ(k) in (17) for the common scale parameter θ
again has the interpretation of the sample mean divided by the average shape parameter in
the mixture, but in the formula for the sample mean, we now take the expected value of the
censored data points given the censoring times and subtract a correction term T (k) due to the
truncation. However, T (k) in (17) depends on θ(k) and has a complicated form. Therefore, it
is not possible to find an analytical solution and we resort to a Newton-type algorithm to solve
(17) numerically using the previous value θ(k−1) as starting value.

The E- and M-steps are iterated until l(Θ(k);X )− l(Θ(k−1);X ) is sufficiently small. The max-
imum likelihood estimator of the original mixing weights αj for j = 1, . . . ,M can be retrieved
by inverting expression (6). This is most easily done by first computing

α̃j =
β̂j

F (tu; rj , θ̂)− F (tl; rj , θ̂)
for j = 1, . . . ,M ,

where β̂j and θ̂ denote the values in the final EM step, and then normalizing the weights such
that they sum to 1.

4 Choice of the shape parameters and of the number of Erlangs
in the mixture

4.1 Initialization

We start by making an initial choice for the number of Erlangs M in the mixture and set the
shapes equal to rj = j for j = 1, 2, . . . ,M . Extending Lee and Lin (2010)2, we introduce a

2We acknowledge the help of Simon Lee who suggested this approach in personal communication.
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spread factor s by which we multiply the shapes in order to get a wider spread at the initial
step, i.e. rj = sj for j = 1, 2, . . . ,M .

The initialization of θ and α is based on the denseness of mixtures of Erlangs (see (Tijms, 1994,
p. 163) and Appendix A), as explained in Section 3.3. Each weight αj gets initialized as the
relative frequency of data points in the interval corresponding to the shape parameter rj . In
case this interval does not contain any data points for some j, the initial weight corresponding to
the Erlang in the mixture with shape rj will be zero and consequently the weight αj will remain
zero at each subsequent iteration. This is clear from the updating scheme (16) in the M-step
and the expressions (13) and (15) of the posterior probabilities in the E-step. The shapes rj
with initial weight αj equal to zero are therefore removed from the mixture at the initial step.

Numerical experiments show that the iterative scheme performs well and results in fast conver-
gence using the above choice of initial estimates for θ and α.

4.2 Adjusting the shapes

Since the initial shape parameters are pre-fixed and hence not estimated, the fitted mixture
might be sub-optimal. Adjustment of the shape parameters is necessary. Ideally, for a given
number of Erlangs M , we want to choose optimal values for the shapes. The choice of the shapes
for a given M however is an optimization problem over NM which is impossible to solve. We
have to resort to a practical procedure which explores the parameter space efficiently in order
to obtain a satisfying choice for the shapes.

After applying the EM algorithm a first time to obtain the maximum likelihood estimates
corresponding to the initial choice of the shape parameters, we perform stepwise variations of
the shapes, each time refitting the scale and the weights using the EM algorithm, and compare
the log likelihoods of the results. We hereby follow the procedure proposed by Lee and Lin
(2010):

1. Run the algorithm starting from the shapes {r1, . . . , rM−1, rM + 1} with initial scale θ
and weights {β1, . . . , βM−1, βM} equal to the final estimates of the previous execution of
the EM algorithm. Repeat this step for as long as the log likelihood improves, each time
replacing the old set of parameters by the new ones. This procedure is then applied on
the (M − 1)th shape and so forth until all the shapes are treated.

2. Run the algorithm starting from the shapes {r1 − 1, r2, . . . , rM} with initial scale θ and
weights {β1, β2, . . . , βM} the final estimates of the previous execution of the EM algorithm.
Repeat this step for as long as the log likelihood improves, each time replacing the old set
of parameters by the new ones. This procedure is then applied on the 2nd shape and so
forth until all the shapes are treated.

3. Repeat the loops described in the previous steps until the log likelihood can no longer be
increased.

Using this algorithm we eventually reach a local maximum of the log likelihood, by which we
mean that the fit can no longer be improved by either increasing or decreasing any of the rj .
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4.3 Reducing the number of Erlangs

Too many Erlangs in the mixture will result in an issue of overfitting, which is always a problem
in statistical modeling. A decision rule such as Akaike’s information criterion (AIC, Akaike,
1974) or Schwartz’s Bayesian information criterion (BIC, Schwarz, 1978) helps to decide on the
value of M . Models with smaller AIC and BIC values are preferred. Any other information
criterion (IC) or objective function could be optimized depending on the purpose for which the
model is used.

The problem of testing for the number of components is of both theoretical and practical im-
portance and has attracted considerable attention of many studies over the years and still is a
major contemporary issue in a mixture modeling context where the underlying population can
be conceptualized as being composed of a finite number of subpopulations. Since mixtures of
Erlangs are employed here as a semi-parametric density estimation technique and not as model-
based clustering, the commonly used criteria of AIC and BIC are adequate for choosing the
number of components (McLachlan and Peel, 2001).

We use a backward stepwise search. As mixtures of Erlangs are dense in the space of positive
continuous distributions, we start from a close-fitting mixture of M Erlangs resulting from the
shape adjustment procedure described in Section 4.2 and compute the value of the IC. We next
reduce the number of Erlangs M in the mixture by deleting the mixture component of which the
shape rj has smallest weight βj , refit the scale and weights using the EM algorithm and readjust
the shapes using the same shape adjustment procedure. If the resulting fit with M − 1 Erlangs
attains a lower value of the IC, the new parameter values replace the old ones. We continue
reducing the number of Erlangs in the mixture until the value of the IC does no longer decrease
by deleting an additional mixture component.

A backward selection has the advantage of providing initial values close to the maximum like-
lihood estimates of the new set of shapes which greatly reduces the run time (Lee and Lin
(2010)). In contrast, by using a forward stepwise procedure it is not clear which additional
shape parameter to use and how the parameters from the previous run can be used to provide
useful information on parameter initialization.

As a guideline, we recommend to start from an initial choice for the number of Erlangs M and
a spread s resulting in a close-fitting or even overfitting of the data.

4.4 Compare the resulting fit using different initializing parameters

Since the log likelihood has multiple local maxima, the value of the initializing parameters M
and s can influence the result. Therefore, it is wise to compare the final fits, after the shape
adjustment procedure and reduction of the number of Erlangs using an IC, starting from different
choices for the initial number of Erlangs M and/or the spread factor s in the initial step. Tuning
of such initializing parameters is common in different numerical algorithms and fitting strategies
as well (Hastie et al., 2009). Specifically for the case of mixture of Erlangs, many values for the
tuning parameters M and s can lead to a satisfying resulting fit, while using a different mixture
of Erlangs representation. This is illustrated in the first data example (Section 5.1, Table 1). In
order not to limit the flexibility of the fitting procedure, we do not prefix the value of M and
s up front and do not propose any stringent rule. The examples in Section 5 show how a small
search for these values is often sufficient to obtain satisfactory results. The freedom of doing an
even wider search is left as an option to the user.
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5 Examples

The usefulness of the proposed fitting procedure is demonstrated using several examples. A first
example involves simulated data from a bimodal distrubution which we censor and truncate
allowing us to compare the original density and the entire uncensored and untruncated sample
to the fitted mixture of Erlangs. The second example illustrates the use of mixtures of Erlangs
to represent right-censored unemployment durations. In the third example, we illustrate the use
of mixtures of Erlangs in actuarial science in the context of loss modeling. We fit a mixture of
Erlang distribution to truncated claim size data and demonstrate how the fitted mixture can be
used to analytically price reinsurance contracts. In the final example, we generate data from a
generalized Pareto distribution to explore limitations in modeling heavy-tailed distributions. The
examples can be replicated using the R code and datasets available on our website3. Additional
examples can be found there as well.

5.1 Simulated censored and truncated bimodal data

We generate a random sample of 5000 observations from the bimodal mixture of gamma distri-
butions with density function given by

fu(x) = 0.4f(x; r = 5, θ = 0.5) + 0.6f(x; r = 10, θ = 1) . (18)

Next we truncate the data by rejecting all observations beneath the 5% sample quantile or
above the 95% sample quantile. The remaining 4500 data points are subsequently being right
censored by generating 4500 observations from another mixture of gamma distributions with
density function

frc(x) = pf(x; r = 5, θ = 2/3) + (1− p)f(x; r = 9, θ = 1.25) , (19)

with p = 0.4. The resulting data set is composed of 2595 uncensored and 1905 right censored
data points, and is used to calibrate the Erlang mixture, keeping the lower and upper truncation
into account.

Using the automatic search from Section 4.4 we start from M = 10 Erlangs in the mixture and
let the spread factor s used in the initial step range from 1 to 10. AIC is used to decide upon
the number of Erlangs to use in the mixture as explained in Section 4.3. The right censored
data points are treated as being observed at the initialization in (10). The different values of
the initializing spread all lead to a different final Erlang mixture, which are reported in Table 1.
This illustrates the importance of varying the initial spread. Based on the AIC and BIC values
(and plots of the fits not shown here), the different models all represent the data quite well.

3www.feb.kuleuven.be/roel.verbelen. The R code contains the procedures discussed in section 4. An illus-
tration is provided for the first example we consider.

www.feb.kuleuven.be/roel.verbelen


5 Examples 14

Table 1: Demonstration of initialization and fitting procedure on the data generated from (18). Starting
point is a mixture of 10 Erlangs. The initial spread factor s ranges from 1 to 10. The super-
scripts in the last two columns represent the preference order according to that information
criterium.

s r α θ AIC BIC

1 3; 12 0.46; 0.54 0.83 13961.095 13993.151

2 4; 14; 18 0.44; 0.34; 0.22 0.63 13956.312 14001.193

3 6; 15; 23; 31 0.39; 0.12; 0.35; 0.15 0.41 13959.513 14017.224

4 5; 15; 21 0.42; 0.20; 0.38 0.51 13955.611 14000.502

5 9; 15; 29; 43; 58 0.23; 0.17; 0.14; 0.31; 0.15 0.22 13961.034 14031.565

6 8; 14; 29; 43; 59 0.21; 0.20; 0.15; 0.31; 0.13 0.22 13962.636 14033.166

7 14; 23; 34; 45; 58; 74; 96 0.20; 0.17; 0.05; 0.07; 0.14; 0.24; 0.13 0.13 13970.2510 14066.4210

8 10; 16; 24; 40; 55; 69; 89 0.12; 0.18; 0.11; 0.10; 0.16; 0.21; 0.12 0.15 13966.948 14063.118

9 11; 18; 28; 46; 63; 79; 101 0.11; 0.19; 0.11; 0.10; 0.17; 0.21; 0.11 0.13 13969.239 14065.419

10 13; 21; 32; 50; 67; 84; 107 0.14; 0.18; 0.09; 0.10; 0.17; 0.21; 0.11 0.12 13966.637 14062.817

The lowest AIC value was reached using spread factor s = 4 with a corresponding mixture of 3
Erlangs. The parameter estimates of this final model are given in Table 2.

Table 2: Parameter estimates of the mixture of 3 Erlangs fitted to the censored and truncated data with
underlying density (18).

rj αj θ

5 0.4206869 0.5081993
15 0.2018598
21 0.3774533

In order to verify the goodness-of-fit, we might consider analytical tests such as the Kolmogorov-
Smirnov test. However, the form of the test statistic and the corresponding distribution is not at
all obvious in a censored and truncated setting. For the case of power-law distributions, Clauset
et al. (2009) used Kolmogorov-Smirnov tests to evaluate whether the hypothesized distribution
adequately describes the tail. Dufour and Maag (1978) modify the form of the test statistic to
allow for truncated and censored data. Guilbaud (1988) derive an exact Kolmogorov-Smirnov
test for left-truncated and/or right-censored data. In an actuarial context, Chernobai et al.
(2014) discuss goodness-of-fit tests for left-truncated loss samples. We mainly focus on graphical
goodness-of fit evaluation in this paper.

A graphical comparison of the fitted distribution and the originally generated data can be found
in Figure 1. We compare the fitted mixture of Erlangs density to the true density (18) and
a histogram of all 5000 generated data points before truncation and censoring in the left plot
in Figure 1. The right plot in Figure 1 compares the truncated mixture of Erlangs density to
the true truncated density and a histogram of the 4500 data points after truncation and before
censoring. The fitted mixture of Erlangs density shows to be a very close approximation of the
true density. Varying the spread from 1 to 10 in the initial mixture of 10 Erlangs is sufficient to
obtain a satisfactory result, so there is no need to increase the number of Erlangs in the initial
step.

In actuarial practice, loss data can sometimes be of multimodal nature due to the fact that the
property and casualty losses often come from multiple sources. Clearly, using standard paramet-
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ric distributions will result in unsatisfactory approximations as they are incapable of reflecting
the multimodal characteristic. Moreover, applying straightforward estimation techniques may
lead to non-convergence issues due to the censoring and truncation. On the contrary, conver-
gence is guaranteed in the presented EM algorithm for mixtures of Erlangs and captures the
bimodality of the data very flexibly.
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Figure 1: Graphical comparison of the density of the fitted mixture of 3 Erlangs, the true underlying
density (18) and the histogram of the generated data before censoring and truncation (left)
and of the truncated density of the fitted mixture of 3 Erlangs, the true truncated density
and the histogram of the generated data after truncated and before censoring (right).

Next, we investigate the sensitivity with respect to the level of censoring in the data. To that
end, we fix the data generated from (18), truncate them at the 5% and 95% sample quantile
and vary the value of the mixing weight p in the density (19) of the right censoring distribution
from 0 to 1 by 0.1. Let f(x) and F (x) denote the true density and distribution function and
f̂(x) and F̂ (x) the estimated mixture of Erlangs density and distribution function. We measure
the performance of both the underlying and the truncated mixture of Erlangs density estimator
in approximating the underlying and the truncated true density by calculating the L1 and L2

norms:

L1 =

∫ ∞
0

∣∣∣f̂(x)− f(x)
∣∣∣ dx L1

t =

∫ tu

tl

∣∣∣∣∣ f̂(x)

F̂ (tu)− F̂ (tl)
− f(x)

F (tu)− F (tl)

∣∣∣∣∣ dx
L2 =

(∫ ∞
0

(
f̂(x)− f(x)

)2
dx

)1/2

L2
t =

∫ tu

tl

(
f̂(x)

F̂ (tu)− F̂ (tl)
− f(x)

F (tu)− F (tl)

)2

dx

1/2

For each value of p in the right censoring distribution (19), we generate 100 censoring samples of
size 4500 and each time fit an Erlang mixture to the right censored dataset using the automatic
search starting from M = 10 Erlangs in the mixture and letting the initial spread s vary from
1 to 10. The averages of the performance measures over the 100 best-fitting resulting mixtures
are shown in Table 3. The L1 and L2 norms over the truncation interval deteriorate when
increasing the censoring level, but remain quite low. This reveals that the performance of the
estimator remains excellent when the level of censoring increases, except at the highest level
where the estimated Erlang mixture is still bimodal but the second mode and the tail of the
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true density are underestimated. The L1 and L2 norms over the entire positive real line do
not run as parallel with the censoring level as the truncated versions. Note in this context the
limitations of accurately estimating the density outside of the truncation interval, since no data
has been observed in that region. One should hence not rely on probability statements made
using the fitted Erlang mixture outside of the data range.

Table 3: Results of the sensitivity analysis with respect to the level of censoring. For each value of
p in the right censoring distribution (19), we generate 100 censoring samples and report the
average censoring level and average performance measures of the best-fitting mixtures of Erlang
distributions.

p censoring % L1 L2 L1
t L2

t

0.0 0.2172 0.0862 0.0227 0.0266 0.0097
0.1 0.2695 0.0594 0.0170 0.0280 0.0099
0.2 0.3224 0.0740 0.0197 0.0278 0.0099
0.3 0.3753 0.0864 0.0226 0.0309 0.0109
0.4 0.4289 0.1438 0.0343 0.0329 0.0114
0.5 0.4806 0.1129 0.0277 0.0367 0.0126
0.6 0.5330 0.0905 0.0235 0.0412 0.0140
0.7 0.5844 0.1527 0.0349 0.0465 0.0157
0.8 0.6383 0.1597 0.0377 0.0594 0.0199
0.9 0.6903 0.1787 0.0416 0.0705 0.0236
1.0 0.7426 0.5156 0.1199 0.2276 0.0997

5.2 Unemployment duration

We examine the economic data from the January Current Population Survey’s Displaced Workers
Supplements (DWS) for the years 1986, 1988, 1990, and 1992 which was first analyzed in McCall
(1996). A thorough discussion of this dataset is available in Cameron and Trivedi (2005). The
variable under consideration is unemployment duration (spell) or more accurately joblessness
duration, measured in two-week intervals. All other covariates in the dataset are ignored in the
analysis. Following Cameron and Trivedi (2005), a spell is considered complete if the person is
re-employed at a full-time job (CENSOR1 = 1) and right-censored otherwise (CENSOR1 = 0). This
results in 1073 uncensored data points and 2270 right censored data points.

The parameter estimates of the Erlang mixture, obtained by using the automatic search proce-
dure starting from M = 10 Erlangs in the mixture with spread factor s in the initial step ranging
from 1 to 10, are given in Table 4. AIC is again used to decide upon the number of Erlangs in
the mixture and the right censored data points are treated as being observed at initialization.
The lowest AIC value was obtained with a mixture of 8 Erlangs. This optimal choice of shapes
was reached using spread factor s = 10.
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Table 4: Parameter estimates of the mixture of 8 Erlangs fitted to the right-censored unemployment
data.

rj αj θ

8 0.10563305 0.1477264
17 0.09443584
33 0.08578746
50 0.09099055
73 0.04273362
99 0.14814091
135 0.07546787
199 0.35681069

The Kaplan-Meier estimator (Kaplan and Meier (1958)), also known as the product limit esti-
mator, is the standard non-parametric estimator of the survival function in case of right censored
data. The resulting survival curve is a step function with jumps at the observed event times
of which the size not only depends on the number of events observed at each event time, but
also on the pattern of the censored observations prior to that event time. In order to graphi-
cally evaluate the fit, we compare the Kaplan-Meier survival curve, along with 95% confidence
bounds, to the survival function of the estimated Erlang mixture in Figure 2. Marks are added
on the Kaplan-Meier estimate to indicate censoring times. The fitted survival function provides
a smooth fit of the data, closely resembling the non-parametric estimate.
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Figure 2: Graphical comparison of the survival function of the fitted mixture of 8 Erlangs and the
Kaplan-Meier estimator with 95% confidence bounds for the right-censored unemployment
data.

As an illustration, we also compare our approach to two commonly used parametric models, the
generalized Pareto distribution (GP) and the generalized beta distribution of the second kind
(GB2). In Figure 2, we see how mixtures of Erlangs offer much more flexibility and lead to a
more appropriate fit for these data at the cost of requiring more parameters. However, AIC and
BIC strongly prefer the mixture of Erlangs approach, see Table 5.
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Table 5: Comparison of information criteria for the different models fitted to the right-censored unem-
ployment data.

Model AIC BIC

Mixtures of Erlangs 8066.281 8170.230
Generalized Pareto (GP) 8733.718 8745.947
Generalized beta 2 (GB2) 8280.168 8304.627

5.3 Secura Re, Belgian insurance data

The Secura Re dataset discussed in Beirlant et al. (2004) contains 371 automobile claims from
1988 until 2001 gathered from several European insurance companies. The data are uncensored,
but left truncated at 1 200 000 since a claim is only reported to the reinsurer if the claim size
is at least as large as 1 200 000 euro. The sizes of the claims are corrected among others for
inflation. Based on these observations, the reinsurer wants to calibrate a model in order to price
reinsurance contracts.

The search procedure using AIC prefers a mixture of only two Erlangs with shapes 5 and 16.
The parameter estimates of this best-fitting mixture are shown in Table 6. In Figure 3 (left) we
compare the histogram of the truncated data to the fitted truncated density. Figure 3 (right)
illustrates that the truncated survival function of the mixture of two Erlangs perfectly coincides
with the Kaplan-Meier estimate.

Table 6: Parameter estimates of the mixture of 2 Erlangs fitted to the left-truncated claim sizes in the
Secura Re dataset.

rj αj θ

5 0.97103229 360 096.1
16 0.02896771
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Figure 3: Graphical comparison of the truncated density of the fitted mixture of 2 Erlangs and the
histogram of the left-truncated claim sizes (left) and of the truncated survival function and
the Kaplan-Meier estimator with 95% confidence bounds (right) for the Secura Re dataset.
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In Figure 4, we validate the fit in the tail by plotting the QQ-plot on the left and the log-log plot
of the empirical truncated survival function (black dots) and the truncated survival function of
the best-fitting Erlang mixture (red line) on the right. Both figures show how the mixture of
only two Erlangs achieves a adequate approximation in the tail.
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Figure 4: QQ-plot of the empirical quantiles and the quantiles of the fitted mixture of 2 Erlangs with
identity line (left) and log-log plot of the empirical truncated survival function and the trun-
cated survival function of the fitted Erlang mixture (right) for the Secura Re dataset.

Following Beirlant et al. (2004, p. 188), we use the calibrated Erlang mixture to price an excess-
of-loss (XL) reinsurance contract, where the reinsurer pays for the claim amount in excess of
a given limit. The net premium Π(R) of such a contract with retention level R > 1 200 000 is
given by

Π(R) = E((X −R)+ | X > 1 200 000)

where X denotes the claim size and (·)+ = max(·, 0). In case X follows a mixture of M Erlang
distributions, where we assume without loss of generality ri = i for i = 1, . . . ,M , the net
premium is

Π(R) =
θe−R/θ

1− F (1 200 000;α, r, θ)

M−1∑
n=0

(
M−1∑
k=n

Ak

)
(R/θ)n

n!

=
θ2

1− F (1 200 000;α, r, θ)

M∑
n=1

(
M−1∑
k=n−1

Ak

)
f(R;n, θ) , (20)

with Ak =
∑M

j=k+1 αj for k = 0, . . . ,M−1. The derivation of this property can be reconstructed
using Willmot and Woo (2007) or Klugman et al. (2013, p. 21). In Table 7, we compare the non-
parametric, Hill and Generalized Pareto (GP) based estimates of Π(R) for the Secura Re dataset
from Table 6.1 in Beirlant et al. (2004, p. 191) to the estimates obtained using formula (20).
The maximum claim size observed in the dataset equals 7 898 639 which is the only data point
on which the non-parametric estimate of the net premium with retention level R = 7 500 000 is
based. The non-parametric estimate corresponding to retention level R = 10 000 000 is hence
zero. The fitted Erlang mixture allows us to estimate the net premium using intrinsically all
data points, but postulates a lighter tail compared to the Pareto-type alternatives since Erlang
mixtures have an asymptotically exponential tail (Neuts (1981, p. 62)). Both the estimates



5 Examples 20

based on the extreme value methodology and those based on the Erlang mixture keep pace with
the non-parametric ones, but at the high-end of the sample range, the estimators differ strongly,
as implied by the different tail behavior of the three approaches. The reinsurance actuary should
carefully investigate the right tail behavior of the data in order to choose his approach.

Table 7: Non-parametric, Hill, GP and Mixture of Erlangs-based estimates for Π(R).

R Non-Parametric Hill GP Mixture of Erlangs

3 000 000 161 728.1 163 367.4 166 619.6 163 987.7
3 500 000 108 837.2 108 227.2 111 610.4 110 118.5
4 000 000 74 696.3 75 581.4 79 219.0 77 747.6
4 500 000 53 312.3 55 065.8 58 714.1 55 746.3
5 000 000 35 888.0 41 481.6 45 001.6 39 451.6
7 500 000 1074.5 13 944.5 16 393.3 4018.6

10 000 000 0.0 6434.0 8087.8 159.6

Besides modeling the tail of the claim size distribution above a certain threshold, Beirlant et al.
(2004, p. 198) also estimate a global statistical model to describe the whole range of all possible
claim outcomes for the Secura Re dataset. This is needed when trying to estimate Π(R) for
values of R smaller than the threshold above which the extreme value distribution is fit. Based
on the mean excess function, the authors propose the use of a mixture of an exponential and
a Pareto distribution (Exp-Par). Instead of having to use this body-tail approach (a form a
splicing, see Klugman et al. (2012)) explicitly, the implemented shape adjustment and reduction
techniques when fitting the Erlang mixture have guided us to a mixture with two components
of which the first one represents the body of the distribution and the second represents the tail.
The fitting procedure for Erlang mixtures is able to make this choice implicitly in a data driven
way, leading to a close representation of the data. In Table 8 we compare the estimated net
premiums from Table 6.2 in Beirlant et al. (2004, p. 198) obtained using the Exp-Par model to
the non-parametric and mixture of Erlangs estimates. The estimates based on the fitted Erlang
mixture follow the non-parametric ones more closely than those obtained using the Exp-Par
model.

Table 8: Non-parametric, Exp-Par and Mixture of Erlangs-based estimates for Π(R).

R Non-Parametric Exp-Par Mixture of Erlangs

1 250 000 981 238.0 944 217.8 981 483.1
1 500 000 760 637.6 734 371.6 760 912.9
1 750 000 583 403.6 571 314.1 582 920.1
2 000 000 445 329.8 444 275.5 444 466.6
2 250 000 340 853.2 344 965.2 339 821.4
2 500 000 263 052.7 267 000.7 262 314.6

Note that when R = 1 200 000, the net premium equals the mean excess loss E(X−R | X > R),
which is called the mean residual lifetime in survival context. (Klugman et al., 2013, p. 20) show
that the distribution of the excess loss or residual lifetime is again a mixture of M Erlangs with
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the same scale θ and different weights which we can compute analytically:

α∗j =

∑M−j
n=0 αn+jf(R;n+ 1, θ)∑M−1
n=0 Anf(R;n+ 1, θ)

for j = 1, . . . ,M .

5.4 Simulated generalized Pareto data

When modeling claim sizes, the insurer or reinsurer is often confronted with heavy tailed distri-
butions. To safeguard the company against extreme losses that might jeopardize their solvency,
an accurate description of the upper tail of the claim size distribution is of utmost importance.
In order to explore the limits of Erlang mixtures in approximating heavy-tailed distribution
using the presented method, we consider the generalized Pareto distribution with density

fX(x;µ, σ, ξ) =
1

σ

(
1 +

ξ(x− µ)

σ

)(
− 1
ξ
−1

)
for x > µ . (21)

with location µ > 0, scale σ > 0 and shape ξ > 0. The generalized Pareto family is known for
its tail thickness and is used for insurance branches with a high probability of large claims, such
as liability insurance. The shape parameter coincides with the extreme value index (EVI) and
determines the heaviness of the tail (Beirlant et al., 2004). The higher the value of the EVI, the
heavier the tail. The variance is finite for ξ < 1/2 and the mean is finite for ξ < 1. In general is
the kth moment finite for ξ < 1/k. When modeling the Secura Re data of the previous example
using Pareto-type modeling, Beirlant et al. (2004) estimate the corresponding EVI around 0.3.
Using the presented method, we were able to obtain a very good approximation in the tail with
a mixture of Erlangs. We now want to illustrate what happens when the EVI further increases,
by generating 1000 observations from a generalized Pareto distribution with location µ = 10,
scale σ = 2 and shape ξ = 1. In this extreme setting, the EVI equals 1 and none of the moments
exist. Location µ = 10 implies that the distribution is left truncated at 10.

In order to obtain a decent approximation of this sample, the initial values of the number of
Erlangs M and the spread s become even more important. Due to the fact that the data
is very skew and heavy-tailed, the maximum in the dataset is extremely high, i.e. max(x) =
10 636.49, and many of the initial shape parameters in the mixture will get a corresponding
weight equal to zero. To ensure that we start our calibration procedure with sufficient non-
zero shape parameters, we decided – after some exploratory choices for M and s – to try all

combinations of spread s between 1 and 10 and initial number of Erlangs M =
⌈
max(x)

i

⌉
for

i = 1, . . . , 10, leading to initial mixtures with 30 to 85 non-zero weight Erlang components. The

best-fitting Erlang mixture according to AIC was obtained starting from M =
⌈
max(x)

7

⌉
= 1520

and s = 4, corresponding to a mixture of 34 non-zero weight Erlang components at the initial
step. The parameter estimates of the final mixture of 16 Erlangs, after the shape adjustment
procedure and the reduction of the number of Erlangs based on AIC, are given in Table 9.
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Table 9: Parameter estimates of the mixture of 16 Erlangs fitted to the simulated generalized Pareto
data.

rj αj θ

2 0.9973387302 1.334924
13 0.0016914393
20 0.0002066144
28 0.0003513364
47 0.0001826860
74 0.0000809294
120 0.0000458669
163 0.0000079065
211 0.0000286491
286 0.0000073181
488 0.0000073471
613 0.0000219147
3338 0.0000073155
4472 0.0000073155
6307 0.0000073155
7964 0.0000073155

The underlying untruncated mixture contains 16 components and is dominated by an Erlang
distribution with shape 2, modeling the main bulk of the data, whereas the approximation of
the tail requires a combination of 15 Erlangs with shapes ranging from 13 to 7964. A graphical
comparison of the fitted Erlang mixture and the underlying true distribution up to the 95%
sample quantile is shown in Figure 5. The QQ-plot in Figure 6 (left) shows that this mixture does
a great job in fitting the sample in the tail. However, the log-log plot of the empirical truncated
survival function and the truncated survival function of the best-fitting Erlang mixture in Figure
6 (right) reveals that this approximation is obtained by letting separate Erlang components with
a very small weight coincide with the largest data points that lie very far apart. Moreover, all
moments of a finite mixture of Erlangs are finite whereas the expected value of the underlying
distribution is infinite. We thus conclude that in this extreme setting with EVI equal to 1, the
fitted finite mixture of Erlang distributions follows the observed dataset closely, but is not able
to extrapolate the heaviness in the tail in comparison to the extreme value methodology based
on the Fisher-Tippett-Gnedenko theorem.
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Figure 5: Graphical comparison of the truncated density of the fitted mixture of 16 Erlangs and the
histogram (left) and of the truncated survival function and the Kaplan-Meier estimator with
95% confidence bounds (right) for the simulated generalized Pareto data up to the 95%
empirical quantile.
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Figure 6: QQ-plot of the empirical quantiles and the quantiles of the fitted mixture of 16 Erlangs
with identity line (left) and log-log plot of the empirical truncated survival function and the
truncated survival function of the fitted Erlang mixture (right) for the simulated generalized
Pareto data.

6 Discussion

We extend the Lee and Lin (2010) EM algorithm for fitting mixtures of Erlangs with a common
scale parameter to censored and truncated data. The EM algorithm able to deal with censored
and truncated data remains a simple iterative algorithm. The initialization of the parameters
can be done in a similar way as in Lee and Lin (2010) based on the denseness property (Tijms,
1994, p. 163) and provides close starting values making the algorithm converge fast. The shape
adjustment procedure explores the parameter space in a clever way such that, when adjusting
and reducing the shapes, the previous estimates for the scale and the weights provide a very
close approximation to the maximum likelihood estimates corresponding to the new set of shapes,
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which greatly reduces the run time. Extending Lee and Lin (2010), we suggest the use of a spread
factor to achieve a wider spread for the shapes at the initial step. We recommend comparing
the resulting fits starting from different initial values obtained by varying the spread factor and
changing the initial number of Erlangs.

We implement the fitting procedure in R and show how mixtures of Erlangs can be used to
adequately represent any univariate distribution in a wide variety of applications where data
is allowed to be censored and truncated. We focus in the paper on the domain of actuarial
science, where claim severity data is often censored and truncated due to policy modifications
such as deductibles and policy limits. The use of mixtures of Erlangs offers on the one hand the
flexibility of nonparametric density estimation techniques to describe the insurance losses and on
the other hand the feasibility to analytically quantify the risk. The examples on several simulated
and real datasets illustrate the effectiveness of our proposed algorithm and demonstrate the
approximation strength of mixtures of Erlangs.

Future research may explore incorporating regressor variables in the mixture of Erlangs with
common scale and introducing the flexibility of this approach in a regression context. We
detected some limitations of mixtures of Erlangs in approximating heavy-tailed distributions
and suggest combining our methodology with the extreme value methodology using a body-tail
approach (Lee et al., 2012; Pigeon and Denuit, 2011). Adjusting the EM algorithm tailored to
the class of multivariate mixtures of Erlangs, introduced by Lee and Lin (2012), to the case of
censored and truncated data is another appealing extension.
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Appendix A Denseness

Theorem A.1. (Tijms, 1994, p. 163) The class of mixtures of Erlang distributions with a com-
mon scale parameter is dense in the space of distributions on R+. More specifically, let F (x) be
the cumulative distribution function of a positive random variable. Define the following cumu-
lative distribution function of a mixture of Erlang distributions with a common scale parameter
θ > 0,

F (x; θ) =
∞∑
j=1

αj(θ)F (x; j, θ) ,

where F (x; j, θ) denotes the cumulative distribution function of an Erlang distribution with shape
j and scale θ,

F (x; j, θ) = 1−
j−1∑
n=0

e−x/θ
(x/θ)n

n!
,
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and the mixing weights are given by

αj(θ) = F (jθ)− F ((j − 1)θ) for j = 1, 2, . . . .

Then
lim
θ→0

F (x; θ) = F (x) ,

for each point x at which F (·) is continuous.

Appendix B Partial derivative of Q

We first introduce the lower incomplete gamma function

γ(s, x) =

∫ x

0
zs−1e−zdz ,

by which we can write the cumulative distribution function of an Erlang distribution as

F (x; r, θ) =

∫ x

0

zr−1e−z/θ

θr(r − 1)!
dz =

1

(r − 1)!

∫ x/θ

0
ur−1e−udu =

γ(r, x/θ)

(r − 1)!
. (22)

In order to maximize Q(Θ; Θ(k−1)) with respect to θ, we set the first order partial derivative at
θ(k) equal to zero

∂Q(Θ; Θ(k−1))

∂θ

∣∣∣∣∣
θ=θ(k)

=
∑
i∈U

M∑
j=1

uz
(k)
ij

(
xi
θ2
− rj
θ
−

∂
∂θ

[
F (tu; rj , θ)− F (tl; rj , θ)

]
F (tu; rj , θ)− F (tl; rj , θ)

)
∑
i∈C

M∑
j=1

cz
(k)
ij

(
E
(
Xi

∣∣Zij = 1, li, ui, t
l, tu; θ(k−1)

)
θ2

− rj
θ

−
∂
∂θ

[
F (tu; rj , θ)− F (tl; rj , θ)

]
F (tu; rj , θ)− F (tl; rj , θ)

)∣∣∣∣∣
θ=θ(k)

(22)
=

1

θ2

∑
i∈U

 M∑
j=1

uz
(k)
ij

xi +
1

θ2

∑
i∈C

 M∑
j=1

cz
(k)
ij E

(
Xi

∣∣∣Zij = 1, li, ui, t
l, tu; θ(k−1)

)
−n
θ
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i∈U
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(k)
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i∈C

cz
(k)
ij

n

)
rj

−
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i∈U

M∑
j=1
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(k)
ij

∂
∂θ

(
γ(rj , t

u/θ)− γ(rj , t
l/θ)
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cz
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ij

∂
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u/θ)− γ(rj , t
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θ=θ(k)
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(16)
=

1
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∑
i∈U

xi +
1
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E
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Xi

∣∣∣li, ui, tl, tu; θ(k−1)
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− n
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β
(k)
j rj
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ij

tl/θ2
(
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(rj − 1)! (F (tu; rj , θ)− F (tl; rj , θ))
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ij

tl/θ2
(
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(
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θ
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β
(k)
j rj

− n
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β
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(
tl
)rj e−tl/θ − (tu)rj e−t
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θ=θ(k)

= 0 ,

where we used expression (22) of the cumulative distribution of an Erlang.
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