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Abstract

Multivariate mixtures of Erlang distributions form a versatile, yet analytically tractable,

class of distributions making them suitable for multivariate density estimation. We present

a flexible and effective fitting procedure for multivariate mixtures of Erlangs, which itera-

tively uses the EM algorithm, by introducing a computationally efficient initialization and

adjustment strategy for the shape parameter vectors. We furthermore extend the EM al-

gorithm for multivariate mixtures of Erlangs to be able to deal with randomly censored

and fixed truncated data. The effectiveness of the proposed algorithm is demonstrated on

simulated as well as real data sets.

Keywords: Multivariate mixtures of Erlangs with a common scale parameter; Density estima-

tion; Censored data; Expectation-maximization algorithm; Maximum likelihood.

1 Introduction

We present an estimation technique for fitting multivariate mixtures of Erlang distributions

(MME). We suggest an efficient initialization method and adjustment strategy for the values of

the shape parameter vectors of an MME, which has been underexposed in the literature. The

fitting procedure is also extended to take random censoring and fixed truncation into account.

∗Corresponding author. E-mail adress: roel.verbelen@kuleuven.be
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The proposed algorithm has been implemented in R and is available online at www.http://

feb.kuleuven.be/roel.verbelen. Data are censored in case you only observe an interval

in which a data point is lying without knowing its exact value. Truncation entails that it is

only possible to observe the data of which the values lie in a certain range. Censoring and/or

truncation is often the case in applications such as loss modeling (finance and actuarial science),

clinical experiments (survival/failure time analysis), veterinary studies (e.g. mastitis studies),

and duration data (econometric studies).

The class of MME is introduced by Lee and Lin (2012). MME form a highly flexible class of

distributions as they are dense in the space of positive continuous multivariate distributions in

the sense of weak convergence, extending this property of the univariate class (Tijms, 1994).

An overview of the analytical and distributional properties of mixtures of Erlangs can be found

in Klugman et al. (2013), Willmot and Lin (2011) and Willmot and Woo (2007). Parameter

estimation in the univariate case is treated in Lee and Lin (2010) and extended to be able to

deal with randomly censored and fixed truncated data in Verbelen et al. (2015).

Mixtures of Erlangs have received most attention in the field of actuarial science. Cossette et al.

(2013a) model the joint distribution of a portfolio of dependent risks using univariate mixtures

of Erlangs as marginals along with the Farlie-Gumbel-Morgenstern (FGM) copula. Cossette

et al. (2013b) and Mailhot (2012) study the bivariate lower and upper orthant Value-at-Risk

and use MME as an illustration. Willmot and Woo (2015) study the analytical properties of

the MME class. They motivate the use of MME in actuarial science and illustrate how their

tractability leads to closed-form expressions.

The use of MME should be regarded as a multivariate density estimation technique, not as

as a type of model-based clustering. The MME model can be seen as semiparametric, since

the mixture components have a specific parametric form, whereas the mixing weights can have

a nonparametric nature, and is an interesting alternative to the use of copulas, which is the

dominant choice to model multivariate data in a two stage procedure, separating the dependence

structure from the marginal distributions (see e.g. Joe, 1997; Nelsen, 2006). In contrast, MME

are able to model the multivariate data directly on the original scale. The MME model enjoys

many desirable properties of a multivariate model as listed by Joe (1997, p. 84), see Lee and Lin

(2012), with regard to interpretability, closure, flexibility and wide range of dependence, and

closed-form representation, often not satisfied for the commonly used copula structures.

An extensive literature exists on mixtures of multivariate normals (see e.g. McLachlan and
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Peel, 2001). Lee and Scott (2012) discuss the estimation of multivariate Gaussian mixtures

in case the data can be randomly censored and fixed truncated. Due to the limitations of

Gaussian mixtures, such as the difficulty in modeling skewed data, non-Gaussian approaches

have received an increasing interest over the last years. Important examples include mixtures

of multivariate t-distributions (see e.g. Peel and McLachlan, 2000), mixtures of multivariate

skew-normal distributions (see e.g. Lin, 2009), and mixtures of multivariate skew-t distributions

(see e.g. Lee and McLachlan, 2014). All of these mixture models involve modeling real-valued

multivariate random variables, whereas in this paper we consider multivariate positive-valued

random variables.

Lee and Lin (2012) show in Theorem 2.3 that a finite multivariate Erlang mixture is a multivari-

ate phase-type distribution, a generalization of the class of univariate phase-type distributions

introduced by Assaf et al. (1984). Parameter estimation for phase-type distributions in the

bivariate case (Eisele, 2005; Zadeh and Bilodeau, 2013), as in the univariate case (Asmussen

et al., 1996; Olsson, 1996), uses the expectation-maximization (EM) algorithm, first introduced

by Dempster et al. (1977)

The EM algorithm forms the key to fit an MME to multivariate positive data. Taking censoring

and truncation into account when calibrating data using copulas is cumbersome, especially in

more than two dimensions, due to complicated forms of the likelihood (see e.g. Georges et al.,

2001) which are hard to optimize numerically. This is, as we will show, not the case for the MME

class due to the EM algorithm. As opposed to the traditional way of dealing with grouped and

truncated data using the EM algorithm (Dempster et al., 1977; McLachlan and Krishnan, 2007,

p. 66; McLachlan and Peel, 2001, p. 257; McLachlan and Jones, 1988), we follow the approach

of Lee and Scott (2012), as was done in the univariate setting (Verbelen et al., 2015).

We demonstrate the effectiveness of our proposed algorithm and the practical use of MME on

a simulated dataset, the old faithful geyser data and a four-dimensional dataset of interval and

right censored udder quarter infection times, each time highlighting one of the analytical aspects

of MME.

2 Multivariate Erlang mixtures with a common scale parameter

In this section, we briefly revise the definition of a multivariate mixture of Erlang distributions

with a common scale parameter and the denseness property of this distributional class. These
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formulas are extended in Section 3.1 and 3.2 towards censoring and truncation.

The Erlang distribution is a positive continuous distribution with density function

f(x; r, θ) =
xr−1e−x/θ

θr(r − 1)!
for x > 0 , (1)

where r, a positive integer, is the shape parameter and θ > 0 the scale parameter (the inverse

λ = 1/θ is called the rate parameter). The cumulative distribution function is obtained by

integrating (1) by parts r times

F (x; r, θ) = 1−
r−1∑
n=0

e−x/θ (x/θ)
n

n!
=

γ(r, x/θ)

(r − 1)!
, (2)

using the lower incomplete gamma function defined as γ(s, x) =
∫ x
0 zs−1e−zdz.

A univariate Erlang distribution is in fact a gamma distribution of which the shape parameter

is a positive integer and can therefore be seen as the distribution of a sum of i.i.d. exponential

random variables. Lee and Lin (2012) define a d-variate Erlang mixture as a mixture such that

each mixture component is the joint distribution of d independent Erlang distributions with

a common scale parameter θ > 0. The dependence structure is captured by the combination

of the positive integer shape parameters of the Erlangs in each dimension. We denote the

positive integer shape parameters of the jointly independent Erlang distributions in a mixture

component by the vector r = (r1, . . . , rd) and the set of all shape vectors with non-zero weight

by R. The mixture weights are denoted by α = {αr |r ∈ R} and must satisfy αr > 0 and∑
r∈R αr = 1. The density of a d-variate Erlang mixture evaluated in x = (x1, . . . , xd) with

xj > 0 for j = 1, . . . , d can then be written as

f(x;α, r, θ) =
∑
r∈R

αrf(x; r, θ) =
∑
r∈R

αr

d∏
j=1

f(xj ; rj , θ) =
∑
r∈R

αr

d∏
j=1

x
rj−1
j e−xj/θ

θrj (rj − 1)!
. (3)

The following property states that for any positive multivariate distribution there exists a se-

quence of multivariate Erlang distributions that weakly converges to the target distribution.

The proof is given in the appendix of Lee and Lin (2012).

Property 1 (Lee and Lin 2012). The class of multivariate Erlang mixtures of form (3) is dense

in the space of positive continuous multivariate distributions in the sense of weak convergence.

More specifically, let f(x) be the density function of a d-variate positive random variable with
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cumulative distribution function F (x). For any given θ > 0, define the following d-variate

Erlang mixture

f(x; θ) =
∞∑

r1=1

· · ·
∞∑

rd=1

αr(θ)
d∏

j=1

f(xj ; rj , θ) , (4)

with mixing weights

αr(θ) =

∫ r1θ

(r1−1)θ
· · ·
∫ rdθ

(rd−1)θ
f(x)dx . (5)

Then lim
θ→0

F (x; θ) = F (x) for each point x at which F is continuous.

In Property 1, for any given common scale θ > 0, an infinite multivariate mixture of Erlangs

in (4) is considered using combinations of shapes from 1 to infinity in each marginal dimension.

The weights in (5) of the components in the mixture are defined by integrating the density

over the corresponding d-dimensional rectangle of the d-dimensional grid formed by the shape

parameters multiplied with the common scale. When the value of the common scale θ decreases,

this grid becomes more refined and the sequence of Erlang mixtures converges to the underlying

cumulative distribution function.

Next to its flexibility, Lee and Lin (2012) show that it is easy to work analytically with this

class of distributions due to the independence structure of the Erlang distributions within each

mixture component. This leads to explicit expressions of many distributional quantities such as

the characteristic function, the joint moments and bivariate measures of association (Kendall’s

tau and Spearman’s rho). The authors further reveal interesting closure properties, such as the

fact that each p-variate marginal or conditional distribution with p 6 d can again be written as

a p-variate Erlang distribution. The same property holds for the distribution of the multivari-

ate excess losses (actuarial science context) or multivariate residual lifetimes (survival analysis

context). Furthermore, the distribution of the sum of the component random variables of an

MME distributed random variable is a univariate Erlang mixture distribution.

Willmot and Woo (2015) consider an extension of the MME class, allowing different scale pa-

rameters in each dimension. However, in Proposition 1 they show how a multivariate mixture of

Erlangs distribution with different scale parameters can be rewritten as a multivariate mixture

of Erlangs distribution with a common scale parameter, which is smaller than all original scales.

We thus concentrate on models with a common scale parameter.
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3 Parameter estimation

The parameters of an MME to be estimated are the common scale parameter θ, the mixture

weights α = {αr |r ∈ R} and the set of corresponding shape parameter vectors R. Lee and

Lin (2012) propose an EM algorithm in order to find the maximum likelihood estimators for

Θ = (α, θ), given a fixed set of shape parameter vectors R. Model selection for the number of

mixture components and the corresponding values of the shape parameter vectors is based on

an information criterion, similar to the univariate strategy of Lee and Lin (2010) and Verbelen

et al. (2015).

The two main novelties we present in this paper are (i) an extension of the EM algorithm to be

able to deal with randomly censored and fixed truncated data and (ii) a computationally more

efficient initialization and adjustment strategy for the shape parameter vectors in order to make

the estimation procedure more flexible and effective. The improvements (i) and (ii) allow us to

analyze realistic data with diverse forms of dependence in contrast to the simulated example in

Lee and Lin (2012) with a simple structure.

First we discuss how we represent a censored and truncated sample and evaluate the expression

of the likelihood. The form of the complete data log-likelihood is given next, followed by the

adjusted EM algorithm and a discussion on some asymptotic properties. In Section 4, we present

the initialization and selection of the shape parameter vectors.

3.1 Randomly censored and fixed truncated data

We represent a censored sample, truncated to the fixed range [tl, tu], by X = {(li,ui)| i = 1, . . . , n}.

The lower and upper truncation points are tl = (tl1, . . . , t
l
d) and tu = (tu1 , . . . , t

u
d), which are com-

mon to each observation i = 1, . . . , n. The lower and upper censoring points are li = (li1, . . . , lid)

and ui = (ui1, . . . , uid). It holds that t
l 6 li 6 ui 6 tu for i = 1, . . . , n. tlj = 0 and tuj =∞ mean

no truncation from below and above for the jth dimension, respectively. The censoring status

for the jth dimension of observation i is determined as follows:

Uncensored: tlj 6 lij = uij =: xij 6 tuj
Left Censored: tlj = lij < uij < tuj
Right Censored: tlj < lij < uij = tuj
Interval Censored: tlj < lij < uij < tuj .

Thus, lij and uij should be interpreted as the lower and upper endpoints of the interval that
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contains the jth element of observation i. A missing value in dimension j for observation i can

also be dealt with by setting lij = tlj and uij = tuj , i.e. treating the missing value as a data point

being interval censored between the lower and upper truncation points.

The likelihood of a censored and truncated sample of a multivariate Erlang distribution is given

by

L(Θ;X ) =
n∏

i=1

∑
r∈R αr

∏d
j=1 f(lij , uij ; rj , θ)

P(tl 6 Xi 6 tu;Θ)

with

f(lij , uij ; rj , θ) =


f(xij ; rj , θ) if lij = uij = xij

F (uij ; rj , θ)− F (lij ; rj , θ) if lij < uij ,

and

P(tl 6 Xi 6 tu;Θ) =
∑
r∈R

αr

d∏
j=1

[
F (tuj ; rj , θ)− F (tlj ; rj , θ)

]
.

The corresponding log-likelihood is

l(Θ;X ) =
n∑

i=1

ln

∑
r∈R

αr

d∏
j=1

f(lij , uij ; rj , θ)

− n ln

∑
r∈R

αr

d∏
j=1

[
F (tuj ; rj , θ)− F (tlj ; rj , θ)

] .

(6)

This expression is however not workable as it involves the logarithm of a sum and cannot be

used to easily find the maximum likelihood estimators for Θ for a fixed set of positive integer

shape parameters R.

3.2 Construction of the complete data likelihood

For an uncensored observation xi, truncated to [tl, tu], the probability density function can be

rewritten as a mixture

f(xi; t
l, tu,Θ) =

f(xi;Θ)

P(tl 6 Xi 6 tu;Θ)
=

∑
r∈R αr

∏d
j=1 f(xij ; rj , θ)

P(tl 6 Xi 6 tu;Θ)

=
∑
r∈R

αr ·
P(tl 6 Xi 6 tu; r, θ)

P(tl 6 Xi 6 tu;Θ)
·
∏d

j=1 f(xij ; rj , θ)

P(tl 6 Xi 6 tu; r, θ)
=
∑
r∈R

βr · f(xi; t
l, tu, r, θ) ,
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for tl 6 xi 6 tu and zero otherwise. The mixing weights βr and component density functions

are given by, respectively,

βr = αr ·
P(tl 6 Xi 6 tu; r, θ)

P(tl 6 Xi 6 tu;Θ)
= αr ·

∏d
j=1

[
F (tuj ; rj , θ)− F (tlj ; rj , θ)

]
∑

m∈R αm
∏d

j=1

[
F (tuj ;mj , θ)− F (tlj ;mj , θ)

] (7)

and

f(xi; t
l, tu, r, θ) =

∏d
j=1 f(xij ; rj , θ)

P(tl 6 Xi 6 tu; r, θ)
=

d∏
j=1

f(xij ; rj , θ)

F (tuj ; rj , θ)− F (tlj ; rj , θ)
. (8)

The weights βr are re-weighted versions of the original weights αr by means of the probabilities

of the corresponding mixture component to lie in the d-dimensional truncation interval. The

component density functions f(xi; t
l, tu, r, θ) are truncated versions of the original component

density functions f(xi; r, θ).

The EM algorithm forms the solution to fit this finite mixture to the censored and truncated

data. The idea is to regard the censored sample X as being incomplete since the uncensored

observations xi = (xi1, . . . , xid) and their associated component-indicators zi = {zir |r ∈ R}

with

zir =


1 if observation xi comes from the mixture component (8)

corresponding to the shape parameter vector r

0 otherwise

(9)

for i = 1, . . . , n and r ∈ R, are not available. The complete data vector, Y = {(xi, zi)|i =

1, . . . , n}, contains all uncensored observations xi and their corresponding mixing component

indicator zi. The log-likelihood of the complete sample Y can then be written as

l(Θ;Y) =
n∑

i=1

∑
r∈R

zir ln
(
βrf(xi; t

l, tu, r, θ)
)
. (10)

3.3 The EM algorithm for censored and truncated data

The EM algorithm finds the maximum likelihood estimators for Θ = (α, θ), given a fixed set

R of positive integer shape parameter vectors, based on a (possibly) censored and truncated

sample by iteratively repeating the following two steps.
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E-step Conditional on the incomplete data X and using the current estimate Θ(k−1) for Θ, we

compute the expectation of the complete log-likelihood (10) in the kth iteration of the E-step:

Q(Θ;Θ(k−1)) = E(l(Θ;Y) | X ;Θ(k−1))

=

n∑
i=1

E

[∑
r∈R

Zir ln
(
βrf(Xi; t

l, tu, r, θ)
)∣∣∣∣∣ li,ui, t

l, tu;Θ(k−1)

]

=
n∑

i=1

∑
r∈R

z
(k)
ir E

[
ln
(
βrf(Xi; t

l, tu, r, θ)
)∣∣∣Zir = 1, li,ui, t

l, tu; θ(k−1)
]

=

n∑
i=1

∑
r∈R

z
(k)
ir

ln(βr) + d∑
j=1

(rj − 1)E
(
ln(Xij)

∣∣∣Zir = 1, lij , uij , t
l
j , t

u
j ; θ

(k−1)
)

− 1

θ

d∑
j=1

E
(
Xij

∣∣∣Zir = 1, lij , uij , t
l
j , t

u
j ; θ

(k−1)
)
−

d∑
j=1

rj ln(θ)−
d∑

j=1

ln((rj − 1)!)

−
d∑

j=1

ln
(
F (tuj ; rj , θ)− F (tlj ; rj , θ)

) . (11)

In the fourth equality, we apply the law of total expectation and denote the posterior probability

that observation i belongs to the mixture component corresponding to the shape parameters r

as z
(k)
ir . These posterior probabilities can be computed using Bayes’ rule,

z
(k)
ir = P (Zir = 1 | li,ui, t

l, tu;Θ(k−1))

=
β
(k−1)
r

∏d
j=1

[
f(lij , uij ; rj , θ

(k−1))
/(

F (tuj ; rj , θ
(k−1))− F (tlj ; rj , θ

(k−1))
)]

∑
m∈R β

(k−1)
m

∏d
j=1

[
f(lij , uij ;mj , θ(k−1))

/(
F (tuj ;mj , θ(k−1))− F (tlj ;mj , θ(k−1))

)]
=

α
(k−1)
r

∏d
j=1 f(lij , uij ; rj , θ

(k−1))∑
m∈R α

(k−1)
m

∏d
j=1 f(lij , uij ;mj , θ(k−1))

. (12)

using (7), for i = 1, . . . , n and r ∈ R.

Since the terms in (11) for Q(Θ;Θ(k−1)) containing E
(
ln(Xij)

∣∣∣Zir = 1, lij , uij , t
l
j , t

u
j ; θ

(k−1)
)
do

not depend on the unknown parameter vector Θ, they will not play a role in the EM algorithm.

In the E-step, we need to compute the expected value of Xij conditional on the censoring and

truncation points and the mixing component Zir for the current value Θ(k−1) of the parameter

vector. For i = 1, . . . , n and r ∈ R, we have

E
(
Xij

∣∣∣Zir = 1, lij , uij , t
l
j , t

u
j ; θ

(k−1)
)

9



=

∫ uij

lij

x
f(x; rj , θ

(k−1))

F (uij ; rj , θ(k−1))− F (lij ; rj , θ(k−1))
dx

=
rjθ

(k−1)

F (uij ; rj , θ(k−1))− F (lij ; rj , θ(k−1))

∫ uij

lij

xrje−x/θ(k−1)(
θ(k−1)

)rj+1
rj !

dx

=
rjθ

(k−1)
(
F (uij ; rj + 1, θ(k−1))− F (lij ; rj + 1, θ(k−1))

)
F (uij ; rj , θ(k−1))− F (lij ; rj , θ(k−1))

, (13)

in case lij < uij and in case lij = uij = xij , the observation is uncensored and the expression is

equal to xij .

M-step In the kth iteration of the M-step, we maximize the expected value (11) of the complete

data log-likelihood obtained in the E-step with respect to the parameter vector Θ over all (β, θ)

with βr > 0,
∑

r∈R βr = 1 and θ > 0. The maximization with respect to the mixing weights β,

requires the maximization of
n∑

i=1

∑
r∈R

z
(k)
ir ln(βr) ,

which can be done analogously as in the univariate case, yielding

β
(k)
r = n−1

n∑
i=1

z
(k)
ir for r ∈ R . (14)

The average over the posterior probabilities of belonging to the jth component in the mixture

forms the new estimator for the prior probability βj in the truncated mixture.

We set the first order partial derivative with respect to θ equal to zero in order to maximize

Q(Θ;Θ(k−1)) over θ (see Appendix A), leading to the following M-step equation:

θ(k) =
n−1

∑n
i=1

∑
r∈R z

(k)
ir

∑d
j=1E

(
Xij

∣∣∣Zir = 1, lij , uij , t
l
j , t

u
j ; θ

(k−1)
)
− T (k)∑

r∈R β
(k)
r
∑d

j=1 rj
, (15)

with

T (k) =
∑
r∈R

β
(k)
r

d∑
j=1

(
tlj

)rj
e−tlj/θ −

(
tuj

)rj
e−tuj /θ

θrj−1(rj − 1)!
(
F (tuj ; rj , θ)− F (tlj ; rj , θ)

)
∣∣∣∣∣∣
θ=θ(k)

.

Similar to the univariate case (Verbelen et al., 2015), the new estimator θ(k) in (15) for the com-

mon scale parameter θ has the interpretation of the expected total mean divided by the weighted

total shape parameter in the mixture minus a correction term T (k) due to the truncation. Since
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T (k) in (15) depends on θ(k) and has a complicated form, it is not possible to find an analytical

solution. Therefore, we use a Newton-type algorithm, with the previous value of θ, i.e. θ(k−1),

as starting value, to solve the equation.

We iterate the E- and M-step until the difference in log-likelihood l(Θ(k);X ) − l(Θ(k−1);X )

between two iterations becomes sufficiently small. By inverting expression (7), we retrieve the

maximum likelihood estimator of the original mixing weights α
(k)
r for r ∈ R. We first compute

α̃r =
β̂r∏d

j=1

[
F (tuj ; rj , θ̂)− F (tlj ; rj , θ̂)

] for r ∈ R , (16)

where β̂r and θ̂ denote the values in the final EM step, and then normalize the weights such

that they sum to 1.

Using the EM algorithm, the log likelihood (6) increases with each iteration (McLachlan and

Krishnan, 2007). The estimator for Θ = (α, θ) obtained from the EM algorithm has the same

limit as the maximum likelihood estimator, whenever the starting value is adequately chosen.

Hence, the maximum likelihood asymptotic theory in terms of consistency, asymptotic normality

and asymptotic efficiency applies. Within the EM framework, the asymptotic covariance matrix

of the maximum likelihood estimator can be assessed (McLachlan and Krishnan, 2007).

These asymptotic results can only be applied with respect to Θ, given a fixed shape set R.

However, the number of mixture components and the corresponding values of the shape pa-

rameter vectors also have to be estimated for which we discuss a strategy in the next section.

The asymptotic results stated here do not take this form of model selection into account. In

Section 5.3 we apply a bootstrap approach to obtain bootstrap confidence intervals for the value

of Kendall’s τ and Spearman’s ρ.

4 Computational details

An efficient multivariate extension of the univariate EM estimation procedure for Erlang mix-

tures is not straightforward. Indeed, initialization of the parameter values and model selection

are the main difficulties when estimating a multivariate Erlang mixture to a data sample and

are crucial for its practical use in data analysis. We fill this gap and suggest an effective method

to initialize the parameters of a multivariate Erlang mixture and a strategy to select the best

set of shape parameter vectors using a model selection criterion.
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4.1 Initialization and first run of the EM algorithm

Property 1 ensures that any positive continuous distribution can be approximated by an MME.

The formulation of the property also shows how this approximation can be achieved in case the

density to be approximated is available. Therefore, it serves as a starting point on how to come

up with initial values in case of a sample of observations. A priori, it is however not clear how

to translate the property to a finite sample setting.

Initializing data In a finite sample setting, we do not have the underlying density function

at our disposal and initialize the parameters making use of an initializing data matrix y of

dimension n × d which contains xij if the jth element of observation i is uncensored, lij in the

case of right censoring, uij in the case of left censoring, and (lij + uij)/2 in case of interval

censoring. Hence, we use popular simple imputation techniques (see e.g. Leung et al., 1997) to

deal with the censoring in the initial step. If the jth element of observation i is missing or right

censored at 0, we set yij equal to missing.

Shapes For any given initial common scale θ(0), instead of using an infinite set of positive

integer shape parameters in each dimension (cfr. Property 1), we restrict this to a maximum

numberM of shape parameters in each dimension. We select these shape parameters in a sensible

way by using M quantiles ranging from the minimum to the maximum in each dimension in

order to make a data-driven decision on the locations of the shape parameters. Denoting the

p-percent quantile of the initializing data in dimension j by Q(p;yj), and taking into account

that the expected value of a univariate Erlang distribution with shape r and scale θ equals rθ,

the set of positive integer shapes in dimension j is chosen as

{r1,j , . . . , rMj ,j} =
{⌈

Q(p;yj)

θ(0)

⌉∣∣∣∣ p = 0,
1

M − 1
,

2

M − 1
, . . . , 1

}
. (17)

where d e denotes upwards rounding, due to the fact that the shapes have to be positive integers.

Consequently, several shapes might coincide which results in Mj 6 M shape parameters in

dimension j. The initial shape set is then constructed as the Cartesian product of the d sets of

positive integer shape parameters in each dimension:

R = {r1,1, . . . , rM1,1} × · · · × {r1,d, . . . , rMd,d} . (18)
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Weights The shape parameters in each dimension, multiplied with the common scale param-

eter θ(0), form a grid that covers the sample range. As an empirical version of Property 1, the

weights αr, for each shape parameter vector r = (rm1,1, . . . , rmd,d) in R, with 1 6 mj 6 Mj

for all j = 1, . . . , d, are initialized by the relative frequency of data points in the d-dimensional

rectangle (rm1−1,1θ
(0), rm1,1θ

(0)]× · · · × (rmd−1,dθ
(0), rmd,dθ

(0)] defined by the grid:

α
(0)
r=(rm1,1,...,rmd,d

) = n−1
n∑

i=1

d∏
j=1

I
(
rmj−1,jθ

(0) < yij 6 rmj ,jθ
(0)
)
, (19)

with r0,j = 0 for notational convenience and the indicator equal to 1/Mj in case yij is missing.

If this hyperrectangle does not contain any data points, the initial weight corresponding to the

multivariate Erlang in the mixture with that shape vector will be set equal to zero. Consequently,

the weight will remain zero at each subsequent iteration of the EM algorithm (see formulas (12)

and (14)). Therefore, these shape vectors can immediately be removed from the set R. At

initialization, the truncation is only taken into account to transform the initial values for α into

the initial values for β via (7).

The maximal number of shape vectors is limited to Md at the initial step. However, due to

the fact that Mj 6 M and many shape parameter vectors will receive an initial weight equal to

zero, the actual number of shape vectors at the initial step will be lower.

Common scale The initial value of the common scale θ is the most influential for the perfor-

mance of the initial multivariate Erlang mixture, as is the case in the univariate setting (Verbelen

et al., 2015). A value which is too large will result in a multivariate mixture which is too flat

(‘underfit’ ); a value which is too small will lead to a mixture which is too peaky (‘overfit’ ). A

priori, it is not evident how one can make an insightful decision on θ. Similar to Verbelen et al.

(2015), we therefore introduce an additional tuning parameter: an integer spread factor s. We

propose to initialize the common scale as

θ(0) =
minj(maxi(yij))

s
. (20)
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Due to the use of marginal quantiles in (17) , the range of the shape parameters varies according

to the sample ranges in each dimension j = 1, . . . , d with a maximum shape parameter equal to

rMj ,j =

⌈
maxi(yij)

θ(0)

⌉
=

⌈
maxi(yij)

minj(maxi(yij))
s

⌉
. (21)

Hence, the spread factor s determines the maximum shape parameter in the dimension with the

smallest maximum. The fact that the common scale parameter is equal across all dimensions

is compensated by the different choice of the shape parameters in each dimension based on

marginal quantiles. This ensures that the initialization works well when the ranges in each

dimension are different and also gives reasonable initial approximations in case the data are

skewed.

Algorithm 1 EM algorithm for a multivariate Erlang mixture.

{Initial step}
Choose M and s

Compute:
θ as in (20)
shape parameters in each dimension as in (17) and shape set R as in (18)
mixture weights α as in (19)

R← {r ∈ R |αr 6= 0}
Transform weights α to β as in (7)
{EM algorithm}
while log-likelihood (6) improves do
{E-step}

Compute:
posterior probabilities (12)
conditional expectations (13)

{M-step}

Update:
weights β as in (14)
scale θ by numerically solving (15)

end while
Transform weights β to α using (16)
return MMEinit = (R,α,β, θ)

Apply EM algorithm Given an initial choice for the set R of shape parameter vectors, the

initial common scale estimate θ(0) and the initial weights β(0) = {β(0)
r |r ∈ R} , we find the

maximum likelihood estimators for (β, θ) corresponding to this initial multivariate mixtures of

Erlangs, denoted by MMEinit, via the EM algorithm as explained in section 3.3. An overview

of the initialization and the EM algorithm written in pseudo code is given in Algorithm 1.
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4.2 Reduction of the shape vectors

The initial shape set R might not be optimal. After application of the EM algorithm, we

reduce the number of mixture components of the fitted multivariate Erlang mixture. We use

a backward stepwise search based on an information criterion. Information criteria, such as

Akaike’s information criterion (AIC, Akaike, 1974) and Schwartz’s Bayesian information criterion

(BIC, Schwarz, 1978), measure the quality of the model as a trade-off between the goodness-of-fit,

via the log-likelihood, and the model complexity, via the number of parameters in the model.

Models with a smaller value of the information criterion are preferred. Based on numerical

experiments, we prefer the use of BIC over AIC since it has a stronger penalty term for the

number of parameters in the model and hence leads to more parsimonious models. BIC is

computed as

BIC = −2 · l(Θ;X ) + ln(n) · |R| · (d+ 1) , (22)

where |R| indicates the number of shape parameter vectors in the shape set R.

We reduce the number of mixture components by removing all redundant shape vectors from

the initial mixture based on BIC. In the backward selection strategy, depicted in pseudo code in

Algorithm 2, we delete the shape parameter vector r from the set R for which the corresponding

mixture component has the smallest weight βr. The remaining weights are standardized to sum

to one. Along with the previous maximum likelihood estimate for the common scale, they serve

as initial estimates to find the maximum likelihood estimators for (β, θ) corresponding to the

reduced set Rred of shape parameter vectors by again applying the EM algorithm. In case

this maximum likelihood estimate achieves a lower BIC value, the reduced set Rred of shape

parameters is accepted and we reduce the number of components further in the same manner.

If not, we keep the previous set. This backward approach provides efficient initial parameter

estimates for the reduced set of shape parameter vectors and ensures a fast convergence of the

EM algorithm.

4.3 Adjustment of the shape vectors

In a next step we improve the shape parameter vectors of the remaining Erlang components

in the mixture. Each time we adjust one of the components of a shape parameter vector by

shifting its value by one (increase or decrease) and use the maximum likelihood estimates (β̂, θ̂)

corresponding to the current shape parameter set R as initial values (β(0), θ(0))adj of the mixture
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Algorithm 2 Reduction of the shape vectors

input MMEinit = (R,α,β, θ)
while BIC (22) improves and |R| > 1 do
Rred ← {r ∈ R |βr 6= minr∈R βr }
(β(0), θ(0))red ← ({βr/

∑
r∈Rred

βr |r ∈ Rred }, θ)
Compute MLE for (β, θ)red using the EM algorithm with initial values (β(0), θ(0))red
if BIC (22) improves then
R← Rred

(β, θ)← (β, θ)red
end if

end while
return MMEred = (R,α,β, θ)

of Erlang distributions with slightly adjusted shape parameter vector set Radj . These initial

values are close to the maximum likelihood estimates which guarantees fast convergence. In

case the maximum likelihood estimate corresponding to the adjusted set Radj achieves a lower

log-likelihood value (6), the adjusted set Radj is accepted and we continue adjusting the value of

the shape parameter in the same direction. If not, we keep the previous set of shape parameter

combinations.

The gradual adjustment strategy of the shape parameter combinations is described in detail

in Algorithm 3. While the log-likelihood improves, we continue to consecutively increase or

decrease the value of a component of a shape parameter vector if it leads to a better fit. The

algorithm converges when no single addition or subtraction of the value of any of the components

of any of the shape parameter vectors leads to an improvement in the log-likelihood.

After adjusting the shape parameters, we apply the reduction step in combination with the

adjustment step. Based on BIC we further reduce the number of shape parameter vectors by

deleting the shape vector with the smallest mixture weight and adjusting the values of the

remaining ones. The outline of this adjustment and further reduction of the shape parameter

vectors, which results in the final MME, is given in Algorithm 4.
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Algorithm 3 Adjustment of the shape combinations

input MMEred = (R,α,β, θ)
while log-likelihood (6) improves do
for j ∈ {1, . . . , d} do

for r̃ ∈ R do
repeat

if (r̃1, . . . , r̃j + 1, . . . , r̃d) /∈ R then
Radj ← {r ∈ R |r 6= r̃} ∪ {(r̃1, . . . , r̃j + 1, . . . , r̃d)}
Compute MLE for (β, θ)adj using the EM algorithm with initial values (β, θ)
if log-likelihood (6) improves then
R← Radj

(β, θ)← (β, θ)adj
end if

end if
until (r̃1, . . . , r̃j + 1, . . . , r̃d) ∈ R or log-likelihood (6) no longer improves

end for
for r̃ ∈ R do

repeat
if (r̃1, . . . , r̃j − 1, . . . , r̃d) /∈ R and r̃j − 1 > 1 then
Radj ← {r ∈ R |r 6= r̃} ∪ {(r̃1, . . . , r̃j − 1, . . . , r̃d)}
Compute MLE for (β, θ)adj using the EM algorithm with initial values (β, θ)
if log-likelihood (6) improves then
R← Radj

(β, θ)← (β, θ)adj
end if

end if
until (r̃1, . . . , r̃j −1, . . . , r̃d) ∈ R or r̃j −1 = 0 or log-likelihood (6) no longer improves

end for
end for

end while
return MMEadj = (R,α,β, θ)

Algorithm 4 Adjustment and further reduction of the shape vectors

input MMEadj = (R,α,β, θ)
while BIC (22) improves and |R| > 1 do
Rred ← {r ∈ R |βr 6= minr∈R βr }
(β(0), θ(0))red ← ({βr/

∑
r∈Rred

βr |r ∈ Rred }, θ)
Compute MLE for (β, θ)red using the EM algorithm with initial values (β(0), θ(0))red
Apply adjustment algorithm 3
if BIC (22) improves then
R← Radj

(β, θ)← (β, θ)adj
end if

end while
return MMEadj = (R,α,β, θ)
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5 Examples

We demonstrate the proposed fitting procedure on three datasets, each time highlighting a dif-

ferent aspect of multivariate mixtures of Erlangs. In a first simulated two-dimensional example,

we explicitly illustrate the different steps of the estimation procedure. Second, we model the

waiting time between eruptions and the duration of the eruptions of the old faithful geyser

dataset. Based on the fitted two-dimensional MME, we immediately obtain the distribution of

the sum of the waiting time and the duration, representing the total cycle time. In the third

example, we use multivariate mixtures of Erlangs to model the udder infection times of dairy

cows observed in a mastitis study, and use the fitted MME to analytically quantify the posi-

tive correlation between the udder infection times using the explicit expression of the bivariate

measures of association Kendall’s tau and Spearman’s rho in the MME setting.

The resulting MME after applying the different steps in choosing the shape vectors depends

heavily on the starting values. Therefore it is crucial to sufficiently explore the effect of changing

the value of the tuning parameters M and s and compare the results of several different initial

starting points for the shape set. In addition to the value of BIC, graphs aid the assessment of

the fitted model.

5.1 Simulated data

As a first example, we generate 1000 uncensored and untruncated observations from a bivari-

ate normal copula with correlation coefficient 0.75 and Erlang distributed margins with shape

parameter equal to 2 and 10, respectively, and scale parameter equal to 3 and 20, resp. A

scatterplot of this simulated dataset is shown in Figure 1a. Due to the parameter choice, the

ranges in each dimension are quite different.

We now apply the different steps of the estimation procedure on this dataset and graphically

illustrate the interpretations and effects of these steps. First we consider the initialization

strategy for the shape set R, the scale parameter θ and the mixture weights β, based on the

denseness property of MME in Property 1, as explained in Section 4.1. This strategy is controlled

by two tuning parameters, a maximum number M of shape parameters in each dimension and

a spread factor s. In this illustration, we use M = 10 and s = 20. For this choice, the scale θ is

initialized as

θ(0) =
minj(maxi(xij))

s
=

27.32452

20
= 1.366226 .
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Figure 1: Simulated example: (a) scatterplot, (b) marginal quantile grid, (c) grid formed by multiplying

the shapes (17) by the common scale (20) and (d) initial weight α
(0)
r=(9,207) = 0.024.

In order to make a data driven choice for the initial positions of the shape parameters, we

compute M marginal quantiles in each dimension, which are depicted in Figure 1b and form a

grid that covers the data range. These marginal quantiles are then divided by the initial scale

θ(0) and rounded upwards to initialize the shape parameters in each dimension:

{r1,j , . . . , rMj ,j} =
{⌈

Q(p;xj)

θ(0)

⌉∣∣∣∣ p = 0,
1

9
,
2

9
, . . . , 1

}
for j = 1, 2 .

The shape set R is constructed as the Cartesian product of the set of shape parameters in each
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dimension:

R = {r1,1, . . . , rM1,1} × {r1,2, . . . , rM2,2}

= {1, 2, 3, 4, 5, 6, 7, 9, 20} × {42, 96, 110, 124, 136, 149, 163, 181, 207, 362} .

Due to the rounding, shape 2 appears twice in the first dimension and only 9 instead of 10 shapes

remain in that dimension. Due to the choice of θ(0), s = 20 is the maximal shape parameter

in the first dimension, the dimension with the smallest maximum. The maximal shape in the

second dimension is s times the ratio of the maximum in the second dimension and the lowest

maximum, rounded upwards (see (21)). If we multiply this shape set R with the initial scale

θ(0), we obtain a grid that covers the entire sample range which is depicted in Figure 1c. This

grid differs from the marginal quantile grid due to the rounding and is used to initialize the

weights as the relative frequency of data points in the 2-dimensional rectangle corresponding to

each shape vector:

α
(0)
r=(rm1,1,rm2,2)

= 0.001

1000∑
i=1

2∏
j=1

I
(
rmj−1,jθ

(0) < yij 6 rmj ,jθ
(0)
)
.

For example, for the shape vector r = (rm1,1, rm2,2) = (9, 207), we consider the 2-dimensional

rectangle (rm1−1,1θ
(0), rm1,1θ

(0)]× (rm2−1,2θ
(0), rm2,2θ

(0)] = (7 · θ(0), 9 · θ(0)]× (181 · θ(0), 207 · θ(0)]

shown in Figure 1d, leading to an initial weight of

α
(0)
r=(9,207) = 0.001

1000∑
i=1

I
(
7 · θ(0) < yi1 6 9 · θ(0)

)
I
(
181 · θ(0) < yi2 6 207 · θ(0)

)
= 0.024 ,

since 24 of the 1000 observations lie in this rectangle. The resulting initial MME contains 71

shape vectors with a nonzero weight and already forms a reasonable approximation for the

main portion of the data. In Figure 2a, we show the scatterplot of the data with an overlay

of the density of the initial MME using a contour plot and heat map. In the margins, we plot

the marginal histograms with an overlay of the true densities in blue and the fitted densities

in red. In the second dimension, there is too much weight in the tail and too little near the

origin. After applying the EM algorithm a first time with these initial estimates, we obtain the

maximum likelihood estimates of the weights and scale corresponding to this choice of the shape

set (Section 4). In Figure 2b, we observe that the fit is better in the tail, but there is still too
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little weight in the second dimension near the origin, due to a bad positioning of the first shape

in second dimension.

Table 1: Parameter estimates of the MME with 11 mixture components fitted to the simulated data.

r αr θ

(1, 56) 0.0124 1.2889
(2, 84) 0.0814
(3, 112) 0.1773
(3, 132) 0.1005
(4, 143) 0.1568
(4, 164) 0.0257
(5, 164) 0.1320
(6, 189) 0.1586
(8, 223) 0.1097

(11, 273) 0.0446
(11, 382) 0.0010

Hence, the initial set of shape parameter vectors is not ideal and additional steps are required

to improve the shape set. First, we reduce the number of mixture components from 71 to 17

by subsequently removing the mixture component having the smallest weight if it is found to

be redundant based on BIC (Section 4.2). The fit of this reduced mixture in Figure 2c nearly

coincides with the one in Figure 2b. Second, we adjust the values of the shape parameter

vectors and further reduce the number of mixture components based on BIC (Section 4.3) until

we obtain a close-fitting MME with 11 shape parameter vectors (Figure 2d). The parameter

estimates of this final MME are given in Table 1.

5.2 Old faithful geyser data

We consider the waiting time between eruptions and the duration of the eruption for the Old

faithful geyser in Yellowstone National Park, Wyoming, USA. We use the version of Azzalini

and Bowman (1990) which contains 299 observations. This dataset is popular in the field of

nonparametric density estimation (see e.g. Silverman, 1986; Härdle, 1991). We stress that we use

MME as a multivariate density estimation technique, and not as a mixture modeling technique

to identify subgroups in this data.

We fit a two-dimensional MME to the data using the fitting strategy explained in Section 4. We

perform a grid search to identify good values for the tuning parameters M and s. We let s vary

between 10 and 90 by 10 and between 100 and 1000 by 100 and set M equal to 5, 10 and 20.
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Figure 2: Scatterplot of the simulated data with an overlay of the fitted density of the MME using a
contour plot and heat map. In the margins, we plot the marginal histograms with an overlay
of the true densities in blue and the fitted densities in red. In (a), we display the fit after
initialization, in (b) after applying the EM algorithm a first time, in (c) after applying the
reduction step and in (d) after applying the adjustment and further reduction step.
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To illustrate the importance and effect of the tuning parameters, we report part of the results

of the search grid, up to s = 200, in Figure 3 and Table 2. Values of s beyond 200 resulted in

MME which were overfitting the data.

Table 2: BIC values and number of mixture components when fitting an MME to the Old Faithful
geyser data, starting from different values of the tuning parameters. The minimum BIC value
is underlined and obtained for M = 10 and s = 90.

M = 5 M = 10 M = 20
s BIC |R| BIC |R| BIC |R|

10 3211.134 2 3211.134 2 3211.134 2
20 3133.564 5 3148.824 5 3148.824 5
30 3069.731 6 3069.731 6 3083.757 6
40 3056.588 8 3024.869 9 3051.427 6
50 3026.997 8 3011.941 12 3023.951 15
60 3011.567 8 3008.350 14 3040.962 16
70 3008.319 8 3008.350 14 3018.867 15
80 3015.743 8 3007.694 15 3039.017 17
90 3028.742 8 2998.870 15 3047.314 18
100 3029.431 8 3005.343 15 3023.761 17
200 3037.532 8 3026.490 23 3224.578 36

The resulting MME depends on the value of the tuning parameters. However, multiple MME

can result in a satisfactory fit of the data. BIC indicates that the best-fitting MME is obtained

for M = 10 and s = 90. The parameter estimates of this MME are reported in Table 3. Both

the marginals as well as the dependence structure are adequately represented by this MME as is

confirmed graphically in Figure 4a. Since the maximum of the waiting times is about 20 times

as big as the maximum of the duration times whereas the scale parameter of the MME is the

same across dimensions, the fitted marginal density is more capricious in the dimension of the

waiting times and smoother in the dimension of the duration times.

We are interested in the distribution of the duration of the total cycle, i.e. the sum of the waiting

time until the eruption and the duration of the eruption. Based on the fitted two-dimensional

MME and due to the analytical properties of MME, we immediately obtain the distribution of

this sum, which is a univariate mixture of Erlang distributions with the same scale, the sum of

the shape parameters across the dimensions as shape parameters and the same corresponding

weights in (Lee and Lin, 2012, Theorem 5.1). Hence, the parameters of this univariate mixture

of Erlang distributions are readily available from Table 3. Comparing the histogram of the

observed total times to the fitted density in Figure 4b reveals a close approximation.
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Figure 3: BIC values when fitting an MME to the
Old Faithful geyser data, starting from
different values of the tuning parameters.
The minimum BIC value is obtained for
M = 10 and s = 90.

Table 3: Parameter estimates of the best-fitting
MME with 15 mixture components fitted
to the Old Faithful geyser data.

r αr θ

(791, 79) 0.0061 0.0556
(893, 81) 0.1103
(964, 79) 0.0798
(1047, 77) 0.0795
(1121, 83) 0.0378
(1193, 79) 0.0402
(1314, 74) 0.0893
(1319, 37) 0.0387
(1418, 73) 0.1284
(1425, 36) 0.1380
(1543, 73) 0.0633
(1551, 36) 0.1249
(1660, 72) 0.0142
(1672, 34) 0.0462
(1940, 36) 0.0033
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Figure 4: Graphical evaluation of the best-fitting MME to the Old Faithful geyser data. In (a), we
display the scatterplot of the data with an overlay of the fitted density using a contour plot
and heat map. The margins show the marginal histograms with an overlay of the fitted
densities in red. In (b), we compare the fitted density of the sum of the components and the
histogram of the observed total cycle times.
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5.3 Mastitis study

Mastitis is economically one of the most important diseases in the dairy sector since it leads to

reduced milk yield and milk quality. In this example, we consider infectious disease data from

a mastitis study by Laevens et al. (1997). This dataset has also been used in Goethals et al.

(2009) and Ampe et al. (2012).

We focus on the infection times of individual cow udder quarters with a bacterium. As each

udder quarter is separated from the three other quarters, one quarter might be infected while the

other quarters remain infection-free. However, the dependence must be modeled since the data

are hierarchical, with individual observations at the udder quarter level being correlated within

the cow. Additionally, the infection times are not known exactly due to a period follow-up, which

is often the case in observational studies since a daily checkup would not be feasible. Roughly

each month, the udder quarters are sampled and the infection status is assessed, from the time of

parturition, at which the cow was included in the cohort and assumed to be infection-free, until

the end of the lactation period. This generates interval-censored data since for udder quarters

that experience an event it is only known that the udder quarter got infected between the last

visit at which it was infection-free and the first visit at which it was infected. Observations can

also be right censored if no infection occurred before the end of the lactation period, which is

roughly 300-350 days but different for every cow, before the end of the study or if the cow is

lost to follow-up during the study, for example due to culling.

The data we consider contains information on 100 dairy cows on the time to infection of the

four udder quarters by different types of bacteria. This dataset is used in Goethals et al. (2009),

who model the data using an extended shared gamma frailty model that is able to handle

the interval censoring and clustering simultaneously. We treat the infection times at the udder

quarter level of the cow as four-dimensional interval and right censored data of which we estimate

the underlying density using MME. The udder quarters are denoted as RL (rear left), FL (front

left), RR (rear right) and FR (front right).

In search for the best values of the tuning parameters in the MME estimation procedure, we

first fixed M = 20 and let s vary between 10 and 100 by 10 and between 100 and 1000 by 100.

As the best final fit was obtained for s = 10, we varied M between 10 and 100 by 10 for s fixed

at 10. The resulting fits did, however, not depend on M when s is as low as 10 since the starting

values were identical. Varying s from 5 tot 15 for M = 20 confirmed that the best fit is obtained
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for M = 20 and s = 10. For this setting, the initial number of shape vectors was 73, which got

reduced to 6 after the reduction step and to 4 after the adjustment step. The final parameter

estimates of the best-fitting mixture are given in Table 4.

Table 4: Parameter estimates of the best-fitting MME with four mixture components fitted to the
mastitis data (infections by all bacteria).

r αr θ

(2, 2, 2, 2) 0.4897 37.8621
(3, 5, 8, 4) 0.1331
(7, 5, 2, 7) 0.2262
(10, 14, 11, 8) 0.1510

In order to graphically examine the goodness-of-fit of the fitted MME, we construct in Figure

5 a generalization of the scatterplot matrix. On the diagonal we compare the Turnbull non-

parametric estimate of the survival curve for right and interval censored data (Turnbull, 1976),

along with the log-transformed equal precision simultaneous confidence intervals (Nair, 1984), to

the univariate marginal survival function of the fitted MME. On the off-diagonal, we construct

bivariate scatterplots of interval and right censored data points, represented using the effective

visualization of Li et al. (2015). Interval censored observation are depicted as segments or rect-

angles ranging from the lower to the upper censoring points and right censored observations are

depicted as arrows starting from the lower censoring point and pointing to the censoring direc-

tion. On top, we display the contour plot and heat map representing the density of the bivarite

marginal of the fitted MME. Based on this graph, we observe that in four dimensions, with 100

interval and right censored observations, we are able to fit an MME with four shape parameter

vectors which appropriately captures the marginals as well as the dependence structure.

As a measure of the infectivity of the agent causing the disease, we are interested in the corre-

lation between udder infection times. Due to the fact that the bivariate marginals again belong

to the MME class and the analytical qualities of MME, we have closed-form expressions for

Kendall’s τ and Spearman’s ρ (Lee and Lin, 2012, Theorem 3.2 and 3.3). Note that these do

not depend on the common scale parameter. For the interval and right censored sample, we can

hence estimate these measures based on the fitted MME to analytically quantify the positive

correlation between each pair of udder quarter infection times (Table 5).

Inference is not straightforward due to the model selection as pointed out in Section 3.3. In order

to quantify the uncertainty and construct an approximate confidence interval for the bivariate
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Figure 5: Scatterplot matrix comparing the fitted four-dimensional MME to the observed interval and
right censored observations of the mastitis data (infections by all bacteria). For more expla-
nation, see Section 5.3

measures of association, we resort to a bootstrapping procedure (Efron and Tibshirani, 1994).

By sampling with replacement from the original four-dimensional dataset of size 100, we generate

1000 bootstrap samples of the same size 100. For each of these bootstrap samples, we fit an

MME where we set the tuning parameter M equal to 20 and let s vary between 5 and 25. We

choose this fixed grid for each bootstrap sample since the optimal tuning parameters for the

full sample were M = 20 and s = 10 and the starting values are not that sensitive with respect
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to M for low values of s. We thereby obtain 1000 estimates for each measure of association.

The 5% and 95% quantiles of these estimates are used to construct a 90% bootstrap percentile

confidence interval for each Kendall’s τ and Spearman’s ρ in Table 5.

Table 5: Estimates and 90% bootstrap confidence intervals for the bivariate measures of association
Kendall’s τ and Spearman’s ρ based on the fitted MME for the mastitis data (infections by all
bacteria).

RL FL RR

FL τ 0.4187
(0.3329, 0.5515)

ρ 0.6019
(0.4727, 0.7439)

RR τ 0.2018 0.3307
(0.1693, 0.3989) (0.2585, 0.4784)

ρ 0.3004 0.4852
(0.2423, 0.5616) (0.3806, 0.6664)

FR τ 0.4326 0.4105 0.2119
(0.3598, 0.5538) (0.2701, 0.4883) (0.1543, 0.3968)

ρ 0.6354 0.5994 0.3122
(0.5066, 0.7608) (0.3875, 0.6794) (0.2206, 0.5577)

6 Discussion

MME form a highly flexible class of distributions which are at the same time mathematically

tractable. From Property 1, we know that any positive continuous multivariate distribution can

be approximated up to any accuracy by an infinite multivariate mixture of Erlang distributions.

Our contribution presents a computationally efficient initialization and adjustment strategy for

the shape parameter vectors, translating this theoretical aspect in a strong point in practice as

well. In the examples, we demonstrate how the fitting procedure is able to estimate an MME

that adequately represents both the marginals and the dependence structure. By extending the

EM algorithm, we are now also able to deal with left, interval or right censored and truncated

data. MME therefore form a valuable multivariate density estimation technique to analyze

realistic data, even in incomplete data settings, and to model the dependence directly in a low

dimensional setting.

Their tractability allows to derive explicit expression of properties of interest. Willmot and

Woo (2015) have paved the way for applying MME in insurance loss modeling, survival analysis

and ruin theory. When modeling insurance losses or dependent risks from different portfolios
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or lines of buniness using MME, the aggregate and excess losses have again a univariate and

multivariate mixture of Erlangs distribution. Stop-loss moments, several types of premiums, risk

capital allocation based on the Tail-Value-at-Risk (TVaR) or covariance rule for regulatory risk

capital requirements (see e.g. Dhaene et al., 2012) have analytical expressions. When modeling

bivariate lifetimes and pricing joint-life and last-survivor insurance (see e.g. Frees et al., 1996)

using MME, the distribution of the minimum and maximum is again a univariate mixture of

Erlangs. Such kind of data are always left truncated and right censored. The extension of

the fitting procedure for MME presented in this paper, allows to take the right censoring into

account. Left truncation can only be properly handled when the left truncation points are

fixed for each observation. This is however not the case when pricing joint-life and last-survivor

insurance since the ages at which policyholders enter a contract vary.

The reduction and adjustment steps of the shape parameters in the fitting procedure iteratively

make use of the EM algorithm and can be time consuming. Further adjustment is needed to

estimate parameters in high dimensional settings. As also acknowledged in the univariate case

(Verbelen et al., 2015), the modeling of heavy-tailed distributions using MME is challenging

since MME are not able to extrapolate the heaviness in the tail.
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Appendix A Partial derivative of Q

In order to maximize Q(Θ;Θ(k−1)) with respect to θ, we set the first order partial derivative at

θ(k) equal to zero. In the second equation, expression (2) of the cumulative distribution of an

Erlang, while (14) is used to obtain the third equation.
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where we used expression (2) of the cumulative distribution of an Erlang in the second equality

and (14) in the third.
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