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Chapter 1

Introduction

Today’s society generates data more rapidly than ever before, creating many
opportunities as well as challenges for statisticians. Many industries become in-
creasingly dependent on high-quality data, and the demand for sound statistical
analysis of these data is rising accordingly.

In the insurance sector, data have always played a major role. When selling
a contract to a client, the insurance company is liable for the claims arising from
this contract and will hold capital aside to meet these future liabilities. As such,
the insurance premium has to be paid before the real costs are known. This is
referred to as the inversion of the production cycle. It implies that the activities
of pricing and reserving are strongly interconnected in actuarial practice. On
the one hand, pricing actuaries have to determine a fair price for the insurance
products they want to sell. Setting the premium levels charged to the insureds
is done in a data driven way where statistical models are essential. Risk-based
pricing is crucial in a competitive and well-functioning insurance market. On
the other hand, an insurance company must safeguard its solvency and reserve
capital to fulfill outstanding liabilities. Reserving actuaries thus must predict,
with maximum accuracy, the total amount needed to pay claims that the insurer
has legally committed himself to cover for. These reserves form the main item
on the liability side of the balance sheet of the insurance company and therefore
have an important economic impact.

The ambition of this research is the development of new, accurate predictive
models for the actuarial work field. Non-life (e.g. motor, fire, liability), life and
health insurers are constantly confronted with the challenges created by rapidly
increasing computer facilities for data collection, storage and analysis. However,
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2 Introduction

using their state-of-the-art methodologies the insurance business will not be able
to formulate an adequate response to these challenges, and interactions with the
disciplines of statistics and big data analytics are necessary. Moreover, the in-
creased focus on internal risk management and the changing supervisory guide-
lines motivate the relevance of improved tools for actuarial predictive modeling.
In particular, the European Solvency II Directive1 imposes new solvency require-
ments to enhance policyholder protection. With the recent introduction of these
new regulatory guidelines, the measurement of future cash flows and their uncer-
tainty becomes more important. At the same time, actuarial predictive models
have to comply with existing and pending regulations. The Gender Directive2

has prohibited the use of gender as a risk factor in insurance pricing and antidis-
crimination laws may progress in the near future further limiting the contractual
freedom of insurance companies.

The overall objective in this work is to improve actuarial practices for pricing
and reserving by using sound and flexible statistical methods shaped for the actu-
arial data at hand. The tools we develop should lead to a better understanding of
actuarial risks and an improved risk management. This thesis focuses on three re-
lated research avenues in the domain of non-life insurance: (1) flexible univariate
and multivariate loss modeling in the presence of censoring and truncation, (2)
car insurance pricing using telematics data and (3) micro-level claims reserving.

1.1 Innovations in loss modeling

Modeling claim losses – also called claim sizes or severities – is crucial when pricing
insurance products, determining capital requirements, or managing risks within
financial institutions. Various basic continuous distributions, such as the gamma
or lognormal, have been employed to model nonnegative losses. However, these
parametric distributions are not always appropriate for actuarial data, which may
be multimodal or heavy-tailed. Furthermore, when constructing collective risk
models or combining actuarial risks from multiple lines of business, these severity
distributions do not lead to an analytical form for the corresponding aggregate
loss distribution. While numerical or simulation algorithms are available, it is
nevertheless convenient to utilize analytical techniques when possible. Of course,
there is always a tradeoff between mathematical simplicity on the one hand and
realistic modeling on the other. Ideally, loss models require on the one hand the

1 See http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009L0138.
2 See http://europa.eu/rapid/press-release_IP-12-1430_en.htm.

http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009L0138
http://europa.eu/rapid/press-release_IP-12-1430_en.htm
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flexibility of nonparametric approaches to describe the claims and on the other
hand the feasibility to analytically quantify the risk.

In actuarial literature, the use of mixtures of Erlang distributions with a com-
mon scale parameter has been suggested to model insurance losses. An Erlang
distribution is in fact a gamma distribution with an integer shape parameter and
can be decomposed as the sum of independent, exponentially distributed random
variables with the same mean (equal to the inverse of the scale parameter). A mix-
ture of such distributions with a common scale parameter can be considered as a
compound distribution of a random sum of exponential random variables with the
same mean. The resulting class of distributions enjoys a wide variety of analytic
properties because it can exploit the mathematical tractability of the exponential
distribution. Many quantities of interest in connection with the aggregation of
claims and stop-loss analysis are easily computable under the mixture of Erlangs
assumption. At the same time, mixtures of Erlangs are extremely versatile in
terms of possible shapes of the probability density function and are capable of
multimodality as well as a wide range of degrees of skewness in the right tail,
often the region of particular interest for risk management purposes. In fact, this
class of distributions is dense in the space of positive continuous distributions. As
such, any continuous distribution can be approximated to an arbitrary degree of
accuracy by a mixture of Erlang distribution.

In Chapter 2, we discuss how to estimate mixtures of Erlangs using censored
and truncated data. Parameter estimation is of course of utmost importance
when we want to apply these mixtures of Erlangs in real-life applications. Our
work is further inspired by the omnipresence of censoring and truncation in an
actuarial context. Insurance contracts often do not provide full coverage of a
loss. A policy modification such as a (franchise) deductible of e500 causes the
insurer to only pay for the claim if it exceeds e500. Such kind of deductible is
also used in excess-of-loss reinsurance treaties when an insurance company on his
turn buys protection for a certain loss layer. As a consequence, only payments
that exceed this threshold will be recorded by the reinsurer and can be used to
estimate the loss distribution. The insurance losses are said to be left truncated
at that threshold. Policy limits on the other hand define the maximum amount
of coverage provided by the insurer. This policy modification has as effect that
the observed insurance losses are right censored, meaning that the exact value of
the loss, in case it exceeds this limit, is not recorded. Right censoring also arises
when claims are not yet fully settled. For such unsettled claims only the payment
to date is known whereas the final total payment will be at least as much.
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In Chapter 3, we extend the estimation procedure under censoring and trun-
cation to multivariate mixtures of Erlang distributions. This multivariate distri-
bution generalizes the univariate mixture of Erlang distributions while preserving
its flexibility and analytical tractability. When modeling multivariate insurance
losses or dependent risks from different portfolios or lines of business, the inherent
shape versatility of multivariate mixtures of Erlangs allows one to adequately cap-
ture both the marginals and the dependence structure. Moreover, its desirable
analytical properties are particularly convenient in a wide variety of insurance
related modeling situations.

1.2 Innovations in car insurance pricing through
telematics technology

Telematics technology – the integrated use of telecommunication and informatics
– may fundamentally change the car insurance industry by allowing insurers to
base their prices on the real driving behavior instead of on traditional policyholder
characteristics and historical claims information. The use of this technology in
insured vehicles enables to transmit and receive information that allows an insur-
ance company to better assess the accident risk of drivers and adjust the premiums
accordingly through usage-based insurance. A small black box device is installed
in the insured’s car containing a GPS system, electronics that capture hundreds
of sensor inputs, a SIM card and some computer software. It records the driving
behavior directly and shares this information with the insurer.

On February 23, 2013 The Economist3 reported “Underwriters have tradition-
ally used crude demographic data such as age, location and sex to separate the
testosterone-fueled boy racers from their often tamer female counterparts. Now
technology is giving insurers the chance to see just how skilled a driver really is.
By monitoring their customers’ motoring habits, underwriters can increasingly
distinguish between drivers who are safe on the road from those who merely seem
safe on paper. Many think that ‘telematics insurance’ will become the industry
norm.”

This industry (r)evolution creates multiple opportunities from a business as
well as statistical modeling perspective. With telematics insurance focus will be
on how much time a car spends on the road (pay-as-you-drive) or on driver ability
(pay-how-you-drive), as an alternative for the current practice where observable

3 How’s my driving? (2013, February 23) The Economist. http: // econ. st/ Yd5x3C

http://econ.st/Yd5x3C
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risk information (like age or gender) is used as a proxy for unobservable character-
istics (like distance driven or driving style). The upswing of telematics data may
also replace (in the near future) rating variables which are currently being banned
from actuarial pricing practice by recent court decisions (such as the gender ban).

The availability of such data collected while driving creates a wide, but unex-
plored territory for statisticians. Usage-based insurance forces pricing actuaries
to change their current practice and to develop innovative statistical tools to cus-
tomize premiums based on the actual driving behavior. Analytic contributions
on this topic in scientific research are scarce, probably because the collection of
this type of data is immature and brand new.

In Chapter 4, we explore the vast potential of telematics insurance from a
statistical point of view by analyzing a unique Belgian portfolio. Driving behavior
data are collected in between 2010 and 2014 for young drivers who signed up for
a telematics product. Since 2010, the Belgian insurance company offers young
drivers a premium discount in exchange for a black box to be installed in their
car. This telematics device collects data on when, where and how long the car is
being used. The aim of our contribution is to develop the statistical methodology
to incorporate this telematics information in statistical rating models, where we
focus on predicting the number of claims, in order to adequately set premium
levels based on individual policyholder’s driving habits. We propose new tools
and techniques that actuaries can use to improve their current pricing practices
and to design new products that are better aligned with the potential these new
technologies offer.

1.3 Innovations in claims reserving

To be able to fulfill future liabilities insurance companies will hold sufficient cap-
ital reserves. Loss reserving deals with the prediction of the remaining develop-
ment of reported, open claims (reported but not settled reserve) and unreported
claims (incurred but not reported reserve). Accurate, reliable and robust reserving
methods for a wide range of products and lines of business are key factors in the
stability and solvability of insurance companies. The industry-wide standard is
the chain-ladder technique, which works on data aggregated in a run-off triangle.
A run-off triangle summarizes the information registered during the lifetime of
individual claims by aggregating loss payments over two dimensions, namely the
year of occurrence of the claim and the period since claim event during which the
payment took place.
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Nowadays, insurance companies keep track of detailed information for each
individual claim. Rich data sources record, for example, the occurrence date, the
reporting delay, the date and amount of each loss payment, and the settlement
date. The existing methods for claims reserving are designed for aggregated data,
but through this data compression many useful information is lost. With the
advent of Solvency II, insurers are required to not only provide a best estimate of
their future liabilities, but also to have a better grasp of their uncertainty. Current
techniques for loss reserving will have to be improved, adjusted or extended to
meet the requirements of the new regulations.

In Chapter 5, we leave the track of aggregated data and focus on the un-
derlying, more granular data. Stochastic loss reserving methods designed at the
individual claim level are referred to as micro-level reserving techniques. The over-
all goal is to increase the predictive power of loss reserving methods and improve
risk measurement by using the information stored in the insurer’s data base sys-
tem, instead of ignoring it. We focus on modeling the claims arrival and reporting
delay using a micro-level approach. Due to time delays between the occurrence
of the insured event and the notification of the claim to the insurer, not all of the
claims that occurred in the past have been observed when the reserve needs to
be calculated. We present a flexible regression framework to model and jointly
estimate the occurrence and reporting of claims. This new technique models the
claim arrival process on a daily basis in order to predict the number of incurred
but not reported claim counts.

The various chapters in this thesis can be found in

(i) Verbelen, R., Gong, L., Antonio, K., Badescu, A., and Lin, X. S. (2015).
Fitting mixtures of Erlangs to censored and truncated data using the EM
algorithm. ASTIN Bulletin, 45(3):729-758.

(ii) Verbelen, R., Antonio, K., and Claeskens, G. (2016). Multivariate mixtures
of Erlangs for density estimation under censoring. Lifetime Data Analysis,
22(3):429-455.

(iii) Verbelen, R., Antonio, K., and Claeskens, G. (2016). Unraveling the pre-
dictive power of telematics data in car insurance pricing. FEB Research
Report KBI 1624.

(iv) Verbelen, R., Antonio, K., Claeskens, G. and Crèvecoeur, J. (2017). Predict-
ing daily IBNR claim counts using a regression approach for the occurrence
of claims and their reporting delay. Working paper.
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The author also contributed to the following original publications

(i) Reynkens, T., Verbelen, R., Beirlant, J. and Antonio, K. (2016). Modeling
censored losses using splicing: a global fit strategy with mixed Erlang and
extreme value distributions, arXiv:1608.01566.

(ii) Henckaerts, R., Antonio, K., Clijsters, M. and Verbelen, R. (2017). A data
driven binning strategy for the construction of risk classes, Working paper.





Chapter 2

Fitting mixtures of Erlangs to

censored and truncated data using

the EM algorithm

Abstract

We discuss how to fit mixtures of Erlangs to censored and truncated data
by iteratively using the EM algorithm. Mixtures of Erlangs form a very ver-
satile, yet analytically tractable, class of distributions making them suitable
for loss modeling purposes. The effectiveness of the proposed algorithm is
demonstrated on simulated data as well as real data sets.

This chapter is based on Verbelen, R., Gong, L., Antonio, K., Badescu, A., and
Lin, X. S. (2015). Fitting mixtures of Erlangs to censored and truncated data
using the EM algorithm. ASTIN Bulletin, 45(3):729-758

2.1 Introduction

The class of mixtures of Erlang distributions with a common scale parameter is
very flexible in terms of the possible shapes of its members. Tijms (1994, p. 163)
shows that mixtures of Erlangs are dense in the space of positive distributions
in the sense that there always exists a series of mixtures of Erlangs that weakly
converges, i.e. converges in distribution, to any positive distribution. As such, any
continuous distribution can be approximated by a mixture of Erlang distributions

9
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to any accuracy. Furthermore, via direct manipulation of the Laplace transform,
a wide variety of distributions whose membership in this class is not immediately
obvious can be written as a mixture of Erlangs. The class of mixtures of Erlangs
with a common scale is also closed under mixture, convolution and compounding.
At the same time, it is possible to work analytically with this class leading to
explicit expressions for e.g. the Laplace transform, the hazard rate, a Tail-Value-
at-Risk (TVAR) and stop-loss moments. A quantile or a Value-at-Risk (VaR)
can be obtained by numerically inverting the cumulative distribution function.
Klugman et al. (2013), Willmot and Lin (2011) and Willmot and Woo (2007)
give an overview of these analytical and computational properties of mixtures of
Erlangs.

Mixtures of Erlang distributions have received most attention in the field of
actuarial science. Modeling data on claim sizes is crucial when pricing insurance
products. Actuarial models help insurance companies to assess the risk associated
with the portfolio, to set the level of premiums (Frees and Valdez, 2008) and re-
serves (Antonio and Plat, 2014), to determine optimal reinsurance levels (Beirlant
et al., 2004) or to determine capital requirements for solvency purposes (Bolancé
et al., 2012). Insurance data are often modeled using a parametric distribution
such as a gamma, lognormal or Pareto distribution. The usual way to proceed
in loss modeling, pricing and reserving is to calibrate the data using several of
these parametric distributions and then select, among these, the most appropriate
model based on a model selection tool (Klugman and Rioux, 2006). These classes
of distributions may however not always be flexible enough in terms of the possible
shapes of their members in order to obtain a satisfying fit (e.g. in the presence of
multimodal data) and resulting models become intractable when aggregating risks
in an insurance portfolio or arising from multiple lines of losses. Ideally, it would
be useful to have a single approach to fitting loss models (Klugman and Rioux,
2006) with on the one hand the flexibility of nonparametric density estimation
techniques to describe the insurance losses and on the other hand the feasibility
to analytically quantify the risk. This is exactly what the class of mixtures of Er-
langs has to offer. In particular, using these distributions in aggregate loss models
leads to an analytical form of the corresponding aggregate loss distribution, which
avoids the need for simulations to evaluate the model.

Mixture models are often used to reflect the heterogeneity in a population
consisting of multiple groups or clusters (McLachlan and Peel, 2001). In some
applications, these clusters can be physically identified and used to interpret the
fitted distributions. This is however not the approach we follow; the components
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in the mixture will not be identified with existing groups. Mixtures of Erlangs are
discussed here for their great flexibility in modeling data and should be regarded
as a semiparametric density estimation technique. The densities in the mixture
are parametrically specified as Erlangs, whereas the associated weights form the
nonparametric part. The number of Erlangs in the mixture with non-zero weights
can be viewed as a smoothing parameter. Mixtures of Erlangs have much of
the flexibility of nonparametric approaches and furthermore allow for tractable
results.

The expectation-maximization (EM) algorithm, first introduced by Dempster
et al. (1977), is an iterative method used to compute maximum likelihood (ML)
estimates when the data can be viewed as being incomplete and direct maxi-
mization of the incomplete data likelihood is either not desirable or not possible
(McLachlan and Krishnan, 2008). The EM algorithm is particularly useful in
estimating the parameters of a finite mixture. The clue is to view data from a
mixture as being incomplete since the associated component-label vectors are not
available (McLachlan and Peel, 2001).

Lee and Lin (2010) iteratively use the EM algorithm (Dempster et al., 1977)
for finite mixtures to estimate the parameters of a mixture of Erlang distributions
with a common scale parameter. For a specified fixed set of shapes, the E- and
M-step can be solved analytically without using any optimization method. This
makes the EM algorithm for mixtures of Erlangs a pure iterative algorithm which
is therefore simple, effective and easy to implement. The initialization is based
on Tijm’s proof of the denseness property of mixtures of Erlangs (Tijms, 1994,
p. 163) which ensures good starting values and fast convergence. Since the number
of Erlangs in the mixture and the corresponding shape parameters are pre-fixed
and hence not estimated, Lee and Lin (2010) propose an adjustment procedure
to identify the ‘optimal’ number of Erlang distributions and the ‘optimal’ shape
parameters of these distributions in the mixture. The authors illustrate the flex-
ibility of mixtures of Erlangs by generating data from parametric models (such
as the uniform, lognormal, and generalized Pareto distribution) and by approx-
imating the underlying distribution of this sample using a mixture of Erlangs.
They further demonstrate the usefulness of mixtures of Erlangs in the context
of quantitative risk management for the insurance business. However, modeling
censored and/or truncated losses is not covered by the approach in Lee and Lin
(2010).

In many practical problems data are censored and/or truncated, for example,
due to the way how the data is collected or measured or by the design of the
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experiment. Censoring entails that you only know in which interval an observation
of a variable lies without knowing the exact value while truncation implies that
you only observe values that lie within a given range. Interest however is in the
underlying distribution of the uncensored and untruncated data instead of the
observed censored and/or truncated data. Hence the censoring and truncation
has to be accounted for in the analysis.

Survival analysis is the most common application in which data are often
censored and truncated. A typical example is a medical study in which one follows
patients over a period of time. In case the event of interest has not yet occurred
before the end of the study, the patient drops out of the study or dies from another
cause, independent of the cause of interest, the event time is right censored. In
case the event of interest is known to have occurred between two dates, but the
precise date is not known, the event time is interval censored. In actuarial science,
insurance losses are often censored and truncated due to policy modifications such
as deductibles (left truncation) and policy limits (right censoring). Left truncation
is also present in life insurance where members of pension schemes and holders of
insurance contracts only enter a portfolio at a certain adult age. Censored and
truncated data occur in the context of claim reserving as well (Antonio and Plat,
2014). Indeed, the reserving actuary wants to predict the future development of
claims when setting aside reserves at the present moment and has to deal with
claims being reported but not yet settled (RBNS) and claims being incurred but
not yet reported (IBNR). In operational risk, data are left truncated as they are
only recorded in case they exceed a certain threshold. Badescu et al. (2015) use the
EM algorithm to fit the correlated frequencies of such left truncated operational
loss data using an Erlang-based multivariate mixed Poisson distribution.

Motivated by the large number of areas where censored and truncated data
are encountered, the objective in this chapter is to develop an extension of the
iterative EM algorithm of Lee and Lin (2010) for fitting mixtures of Erlangs with
common scale parameter to censored and truncated data. The traditional way
of dealing with (grouped and) truncated data using the EM algorithm involves
treating the unknown number of truncated observations as a random variable and
including it into the complete data vector (Dempster et al., 1977; McLachlan and
Krishnan, 2008, p. 66; McLachlan and Peel, 2001, p. 257; McLachlan and Jones,
1988). We do not follow this approach and rather only include the uncensored
observations and the component-label vectors in the complete data vector as is also
done in Lee and Scott (2012). The fitting procedure is applicable to a wide range
of applications. We demonstrate its use in actuarial science and econometrics.



2.2. Mixtures of Erlangs with a common scale parameter 13

In the following, we briefly introduce mixtures of Erlangs with a common
scale parameter in Section 2.2. The adjusted EM algorithm, able to deal with
censored and truncated data, is presented in Section 2.3. The procedures used
to initialize the parameters, to adjust the shapes of the Erlangs in the mixture
and to choose the number of components are discussed in Section 2.4. Examples
follow in Section 2.5 and Section 2.6 concludes.

2.2 Mixtures of Erlangs with a common scale pa-
rameter

The Erlang distribution is a positive continuous distribution with density function

f(x; r, θ) = xr−1e−x/θ

θr(r − 1)! for x > 0 , (2.1)

where r, a positive integer, is the shape parameter and θ > 0 the scale parameter
(the inverse λ = 1/θ is called the rate parameter). The cumulative distribution
function is obtained by integrating (2.1) by parts r times

F (x; r, θ) =
∫ x

0

zr−1e−z/θ

θr(r − 1)! dz = 1−
r−1∑
n=0

e−x/θ (x/θ)n

n! . (2.2)

Following Lee and Lin (2010) we consider mixtures of M Erlang distributions
with common scale parameter θ > 0 and having density

f(x;α, r, θ) =
M∑

j=1
αj

xrj−1e−x/θ

θrj (rj − 1)! =
M∑

j=1
αjf(x; rj , θ) for x > 0 , (2.3)

where the positive integers r = (r1, . . . , rM ) with r1 < . . . < rM are the shape
parameters of the Erlang distributions and α = (α1, . . . , αM ) with αj > 0 and∑M

j=1 αj = 1 are the weights used in the mixture. Similarly, the cumulative
distribution function can be written as a weighted sum of terms (2.2) or (2.22).

Tijms (1994, p. 163) shows that the class of mixtures of Erlang distributions
with a common scale parameter is dense in the space of distributions on R+. The
formulation of the Theorem is given in Appendix 2.7. Lee and Lin (2010) give an
alternative proof using characteristic functions.
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2.3 The EM algorithm for censored and trun-
cated data

Lee and Lin (2010) formulate the EM algorithm customized for fitting mixtures
of Erlangs with a common scale parameter to complete data. Here, we construct
an adjusted EM algorithm which is able to deal with censored and truncated
data. We represent a censored sample truncated to the range [tl, tu] by X =
{ (li, ui)| i = 1, . . . , n}, where tl and tu represent the lower and upper truncation
points, li and ui the lower and upper censoring points and tl 6 li 6 ui 6 tu

for i = 1, . . . , n. tl = 0 and tu = ∞ mean no truncation from below and above,
respectively. The censoring status is determined as follows:

Uncensored: tl 6 li = ui =: xi 6 tu

Left Censored: tl = li < ui < tu

Right Censored: tl < li < ui = tu

Interval Censored: tl < li < ui < tu

For example, when the truncation interval equals [tl, tu] = [0, 10], an uncen-
sored observation at 1 gets denoted by (li, ui) = (1, 1), an observation left censored
at 2 by (li, ui) = (0, 2), an observation right censored at 3 by (li, ui) = (3, 10)
and an observation censored between 4 and 5 by (li, ui) = (4, 5). Thus, li and
ui should be seen as the lower and upper endpoints of the interval that contains
observation i.

The parameter vector to be estimated is Θ = (α, θ). The number of Erlangs
M in the mixture and the corresponding positive integer shapes r are fixed. The
value of M is, in most applications, however unknown and has to be inferred from
the available data, along with the shape parameters, see Section 2.4. The portion
of the likelihood containing the unknown parameter vector Θ is given by

L(Θ;X ) =
∏
i∈U

f(xi; Θ)
F (tu; Θ)− F (tl; Θ)

∏
i∈C

F (ui; Θ)− F (li; Θ)
F (tu; Θ)− F (tl; Θ)

where U is the subset of observations in {1, . . . , n} which are uncensored and C

is the subset of left, right and interval censored observations. In case there is no
truncation, i.e. [tl, tu] = [0,∞], the contribution of a left censored observation to
the likelihood equals F (ui; Θ) since li = 0, of a right censored observation 1 −
F (li; Θ) with ui =∞, and of an interval censored observation F (ui; Θ)−F (li; Θ).
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The corresponding log-likelihood is

l(Θ;X ) =
∑
i∈U

ln

 M∑
j=1

αjf(xi; rj , θ)

+
∑
i∈C

ln

 M∑
j=1

αj (F (ui; rj , θ)− F (li; rj , θ))


− n ln

 M∑
j=1

αj

(
F (tu; rj , θ)− F (tl; rj , θ)

) , (2.4)

which is difficult to optimize numerically.

2.3.1 Truncated mixture of Erlangs

The probability density function evaluated at an uncensored observation xi after
truncation (tl, tu) is given by

f(xi; tl, tu, Θ) = f(xi; Θ)
F (tu; Θ)− F (tl; Θ)

=
M∑

j=1
αj ·

f(xi; rj , θ)
F (tu; Θ)− F (tl; Θ)

=
M∑

j=1
αj ·

F (tu; rj , θ)− F (tl; rj , θ)
F (tu; Θ)− F (tl; Θ) · f(xi; rj , θ)

F (tu; rj , θ)− F (tl; rj , θ)

=
M∑

j=1
βjf(xi; tl, tu, rj , θ) , (2.5)

for tl 6 xi 6 tu and zero otherwise. This is again a mixture with mixing weights
βj and component density functions given by, respectively,

βj = αj ·
F (tu; rj , θ)− F (tl; rj , θ)

F (tu; Θ)− F (tl; Θ) (2.6)

and

f(xi; tl, tu, rj , θ) = f(xi; rj , θ)
F (tu; rj , θ)− F (tl; rj , θ) . (2.7)

The component density functions f(xi; tl, tu, rj , θ) are truncated versions of the
original component density functions f(xi; rj , θ). The weights βj are obtained by
reweighting the original weights αj by means of the probabilities of the corre-
sponding component to lie in the truncation interval.
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2.3.2 Construction of the complete data vector

The EM algorithm provides a computationally easy way to fit this finite mixture
to the censored and truncated data. The main clue is to regard the censored
sample X as being incomplete since the uncensored observations x = (x1, . . . , xn)
and their associated component-indicator vectors z = (z1, . . . , zn) with

zij =


1 if observation xi comes from the mixture component (2.7)

corresponding to the shape parameter rj

0 otherwise

(2.8)

for i = 1, . . . , n and j = 1, . . . , M , are not available. The component-label vectors
z1, . . . , zn are distributed according to a multinomial distribution consisting of
one draw on M categories with probabilities β1, . . . , βM where

P (Zi = zi) = βzi1
1 . . . , βziM

M

for i = 1, . . . , n with zij equal to 0 or 1 and
∑M

j=1 zij = 1. We write

Z1, . . . ,Zn
i.i.d.∼ MultM (1,β) .

Hence, the latent variables Zi reveal which component density generated obser-
vation xi. Whereas the unconditional truncated probability density function is
given by (2.5), the conditional truncated probability density function of Xi given
Zij = 1 is given by (2.7).

The complete data vector, Y = (x1, . . . , xn, z) = {(xi, zi)|i = 1 . . . n}, contains
all uncensored observations xi and their corresponding mixing component vector
zi. The log-likelihood of the complete sample Y then becomes

l(Θ;Y) =
n∑

i=1

M∑
j=1

zij ln
(
βjf(xi; tl, tu, rj , θ)

)
, (2.9)

which has a simpler form than the incomplete log-likelihood (2.4) as it does not
contain logarithms of sums. The EM algorithm deals with the censored and
truncated data from the mixture of Erlangs with common scale in the following
steps.
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2.3.3 Initial step

An initial guess for Θ is needed to start the algorithm. The closer the starting
value is to the true maximum likelihood estimator, the faster the algorithm will
converge. Parameter initialization is often the sore point of an EM implementation
and the study of good initial estimates is often not feasible and disregarded.

For mixtures of Erlangs however, the denseness property (see Tijms (1994,
p. 163) and Appendix 2.7) provides an excellent way of coming up with good
initial estimates. In the initial step, we deal with the censoring and truncation
in a crude manner. We switch to an initializing data set, denoted by d, in which
we treat the left and right censored data points as being observed, i.e. we use
ui and li, respectively, and we replace the interval censored data points with the
midpoint, i.e. we use (li + ui)/2. Based on this initial data, we initialize the
parameters θ and α as:

θ(0) = max(d)
rM

and α
(0)
j =

∑n
i=1 I

(
rj−1θ(0) < di 6 rjθ(0))

n
, (2.10)

for j = 1, . . . , M , with r0 = 0 for notational convenience. Inspired by Tijms’s for-
mulation of the denseness property, the initial scale θ(0) is chosen such that θ(0)rM

equals the maximum data point and the initial weights αj for j = 1, 2, . . . , M are
set to be the relative frequency of data points in the interval (rj−1θ(0), rjθ(0)].
The truncation is only taken into account to transform the initial values for α
into the initial values for β via (2.6).

2.3.4 E-step

In the kth iteration of the E-step, we take the conditional expectation of the
complete log-likelihood (2.9) given the incomplete data X and using the current
estimate Θ(k−1) for Θ with

Q(Θ; Θ(k−1)) = E(l(Θ;Y) | X ; Θ(k−1))

= E

∑
i∈U

M∑
j=1

Zij ln
(
βjf(xi; tl, tu, rj , θ)

)∣∣∣∣∣∣X ; Θ(k−1)


+ E

∑
i∈C

M∑
j=1

Zij ln
(
βjf(Xi; tl, tu, rj , θ)

)∣∣∣∣∣∣X ; Θ(k−1)


= Qu(Θ; Θ(k−1)) + Qc(Θ; Θ(k−1)) , (2.11)
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where Qu(Θ; Θ(k−1)) and Qc(Θ; Θ(k−1)) are the conditional expectations of the
uncensored and censored part of the complete log-likelihood, respectively.

Uncensored case. The truncation does not complicate the computation of the
expectation for the uncensored data as

Qu(Θ; Θ(k−1)) = E

∑
i∈U

M∑
j=1

Zij ln
(
βjf(xi; tl, tu, rj , θ)

)∣∣∣∣∣∣X ; Θ(k−1)


=
∑
i∈U

M∑
j=1

E
[

Zij | X ; Θ(k−1)
]

ln
(
βjf(xi; tl, tu, rj , θ)

)
=
∑
i∈U

M∑
j=1

uz
(k)
ij ln

(
βjf(xi; tl, tu, rj , θ)

)
=
∑
i∈U

M∑
j=1

uz
(k)
ij

[
ln(βj) + (rj − 1) ln(xi)−

xi

θ
− rj ln(θ)

− ln((rj − 1)!)− ln
(
F (tu; rj , θ)− F (tl; rj , θ)

)]
, (2.12)

with, for i ∈ U and j = 1, . . . , M ,

uz
(k)
ij = P (Zij = 1 | xi, tl, tu; Θ(k−1))

=
β

(k−1)
j f(xi; tl, tu, rj , θ(k−1))∑M

m=1 β
(k−1)
m f(xi; tl, tu, rm, θ(k−1))

(2.7)=
β

(k−1)
j

f(xi;rj ,θ(k−1))
F (tu;rj ,θ(k−1))−F (tl;rj ,θ(k−1))∑M

m=1 β
(k−1)
m

f(xi;rm,θ(k−1))
F (tu;rm,θ(k−1))−F (tl;rm,θ(k−1))

(2.6)=
α

(k−1)
j f(xi; rj , θ(k−1))∑M

m=1 α
(k−1)
m f(xi; rm, θ(k−1))

, (2.13)

where we plugged in definitions (2.6) and (2.7) of the weights and components of
the truncated mixture in the last two equations in order to express this probability
in terms of the original mixing weights and mixing components. The E-step for
the uncensored part only requires the computation of the posterior probabilities
uz

(k)
ij that observation i belongs to the jth component in the mixture, which

remains the same in the truncated case and in the untruncated case.
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Censored case. Denote by cz
(k)
ij the posterior probability that observation i

belongs to the jth component in the mixture for a censored data point. Then

Qc(Θ; Θ(k−1))

= E

∑
i∈C

M∑
j=1

Zij ln
(
βjf(Xi; tl, tu, rj , θ)

)∣∣∣∣∣∣X ; Θ(k−1)


=

∑
i∈C

E

 M∑
j=1

Zij ln
(
βjf(Xi; tl, tu, rj , θ)

)∣∣∣∣∣∣ li, ui, tl, tu; Θ(k−1)


=

∑
i∈C

M∑
j=1

cz
(k)
ij E

[
ln
(
βjf(Xi; tl, tu, rj , θ)

)∣∣Zij = 1, li, ui, tl, tu; θ(k−1)
]

=
∑
i∈C

M∑
j=1

cz
(k)
ij

[
ln(βj) + (rj − 1)E

(
ln(Xi)

∣∣∣Zij = 1, li, ui, tl, tu; θ(k−1)
)

−1
θ

E
(

Xi

∣∣∣Zij = 1, li, ui, tl, tu; θ(k−1)
)
− rj ln(θ)− ln((rj − 1)!)

− ln
(
F (tu; rj , θ)− F (tl; rj , θ)

)]
(2.14)

where we used the tower rule in the third equality. Again using Bayes’ rule, we
can compute these posterior probabilities, for i ∈ C and j = 1, . . . , M , as

cz
(k)
ij = P (Zij = 1 | li, ui, tl, tu; Θ(k−1))

=
β

(k−1)
j

(
F (ui; tl, tu, rj , θ(k−1))− F (li; tl, tu, rj , θ(k−1))

)∑M
j=1 β

(k−1)
j

(
F (ui; tl, tu, rj , θ(k−1))− F (li; tl, tu, rj , θ(k−1))

)
=

β
(k−1)
j

F (ui;rj ,θ(k−1))−F (li;rj ,θ(k−1))
F (tu;rj ,θ(k−1))−F (tl;rj ,θ(k−1))∑M

j=1 β
(k−1)
j

F (ui;rj ,θ(k−1))−F (li;rj ,θ(k−1))
F (tu;rj ,θ(k−1))−F (tl;rj ,θ(k−1))

(2.6)=
α

(k−1)
j

(
F (ui; rj , θ(k−1))− F (li; rj , θ(k−1))

)∑M
j=1 α

(k−1)
j

(
F (ui; rj , θ(k−1))− F (li; rj , θ(k−1))

) . (2.15)

The expression for the posterior probability in the censored case has the same
form as in the uncensored case (2.13), but with the densities replaced by the
probabilities in between the upper and lower censoring points. The terms in (2.14)
for Qc(Θ; Θ(k−1)) containing E(ln(Xi)|Zij = 1, li, ui, tl, tu; θ(k−1)) will not play a
role in the EM algorithm as they do not depend on the unknown parameter vector
Θ. The E-step requires the computation of the expected value of Xi conditional
on the censoring times and the mixing component Zi for the current value Θ(k−1)
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of Θ:

E
(

Xi

∣∣∣Zij = 1, li, ui, tl, tu; θ(k−1)
)

=
∫ ui

li

x
f(x; rj , θ(k−1))

F (ui; rj , θ(k−1))− F (li; rj , θ(k−1))
dx

= rjθ(k−1)

F (ui; rj , θ(k−1))− F (li; rj , θ(k−1))

∫ ui

li

xrj e−x/θ(k−1)(
θ(k−1)

)rj+1
rj !

dx

=
rjθ(k−1) (F (ui; rj + 1, θ(k−1))− F (li; rj + 1, θ(k−1))

)
F (ui; rj , θ(k−1))− F (li; rj , θ(k−1))

,

for i ∈ C and j = 1, . . . , M , which has a closed-form expression.

2.3.5 M-step

In the M-step, we maximize the expected value (2.11) of the complete data log-
likelihood obtained in the E-step with respect to the parameter vector Θ over all
(β, θ) with βj > 0,

∑M
j=1 βj = 1 and θ > 0. The expressions for Qu(Θ; Θ(k−1))

and Qc(Θ; Θ(k−1)) are given in (2.12) and (2.14), respectively. The maximization
over the mixing weights β, requires the maximization of

∑
i∈U

M∑
j=1

uz
(k)
ij ln(βj) +

∑
i∈C

M∑
j=1

cz
(k)
ij ln(βj) .

We implement the restriction
∑M

j=1 βj = 1 by setting βM = 1−
∑M−1

j=1 βj . Setting
the partial derivatives at β(k) equal to zero implies that the optimizer satisfies

β
(k)
j =

∑
i∈U

uz
(k)
ij +

∑
i∈C

cz
(k)
ij∑

i∈U
uz

(k)
iM +

∑
i∈C

cz
(k)
iM

β
(k)
M for j = 1, . . . , M − 1 .

By the sum constraint we have

β
(k)
M =

∑
i∈U

uz
(k)
iM +

∑
i∈C

cz
(k)
iM

n
,

and the same form also follows for j = 1, . . . , M − 1:

β
(k)
j =

∑
i∈U

uz
(k)
ij +

∑
i∈C

cz
(k)
ij

n
for j = 1, . . . , M . (2.16)
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The new estimate for the prior probability βj in the truncated mixture is the
average of the posterior probabilities of belonging to the jth component in the
mixture. The optimizer indeed corresponds to a maximum since the matrix of
second order partial derivatives is negative definite matrix with a compound sym-
metry structure.

In order to maximize Q(Θ; Θ(k−1)) with respect to θ, we set the first order
partial derivatives equal to zero (see Appendix 2.8). This leads to the following
M-step equation for θ:

θ(k) =
(∑

i∈U xi +
∑

i∈C E
(
Xi

∣∣li, ui, tl, tu; θ(k−1) )) /n− T (k)∑M
j=1 β

(k)
j rj

, (2.17)

with

T (k) =
M∑

j=1
β

(k)
j

(
tl
)rj

e−tl/θ − (tu)rj e−tu/θ

θrj−1(rj − 1)! (F (tu; rj , θ)− F (tl; rj , θ))

∣∣∣∣∣∣
θ=θ(k)

.

As in the uncensored case, the new estimate θ(k) in (2.17) for the common
scale parameter θ again has the interpretation of the sample mean divided by the
average shape parameter in the mixture, but in the formula for the sample mean,
we now take the expected value of the censored data points given the censoring
times and subtract a correction term T (k) due to the truncation. However, T (k) in
(2.17) depends on θ(k) and has a complicated form. Therefore, it is not possible
to find an analytical solution and we resort to a Newton-type algorithm to solve
(2.17) numerically using the previous value θ(k−1) as starting value.

The E- and M-steps are iterated until l(Θ(k);X )− l(Θ(k−1);X ) is sufficiently
small. The maximum likelihood estimator of the original mixing weights αj for
j = 1, . . . , M can be retrieved by inverting expression (2.6). This is most easily
done by first computing

α̃j = β̂j

F (tu; rj , θ̂)− F (tl; rj , θ̂)
for j = 1, . . . , M ,

where β̂j and θ̂ denote the values in the final EM step, and then normalizing the
weights such that they sum to 1.
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2.4 Choice of the shape parameters and of the
number of Erlangs in the mixture

2.4.1 Initialization

We start by making an initial choice for the number of Erlangs M in the mixture
and set the shapes equal to rj = j for j = 1, 2, . . . , M . Extending Lee and Lin
(2010), we introduce a spread factor s by which we multiply the shapes in order
to get a wider spread at the initial step, i.e. rj = sj for j = 1, 2, . . . , M .

The initialization of θ and α is based on the denseness of mixtures of Erlangs
(see (Tijms, 1994, p. 163) and Appendix 2.7), as explained in Section 2.3.3. Each
weight αj gets initialized as the relative frequency of data points in the interval
corresponding to the shape parameter rj . In case this interval does not contain
any data points for some j, the initial weight corresponding to the Erlang in the
mixture with shape rj will be zero and consequently the weight αj will remain
zero at each subsequent iteration. This is clear from the updating scheme (2.16)
in the M-step and the expressions (2.13) and (2.15) of the posterior probabilities
in the E-step. The shapes rj with initial weight αj equal to zero are therefore
removed from the mixture at the initial step.

Numerical experiments show that the iterative scheme performs well and re-
sults in fast convergence using the above choice of initial estimates for θ and
α.

2.4.2 Adjusting the shapes

Since the initial shape parameters are pre-fixed and hence not estimated, the fitted
mixture might be sub-optimal. Adjustment of the shape parameters is necessary.
Ideally, for a given number of Erlangs M , we want to choose optimal values for
the shapes. The choice of the shapes for a given M however is an optimization
problem over NM which is impossible to solve. We have to resort to a practical
procedure which explores the parameter space efficiently in order to obtain a
satisfying choice for the shapes.

After applying the EM algorithm a first time to obtain the maximum likelihood
estimates corresponding to the initial choice of the shape parameters, we perform
stepwise variations of the shapes, each time refitting the scale and the weights
using the EM algorithm, and compare the log-likelihoods of the results. We
hereby follow the procedure proposed by Lee and Lin (2010):
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(i) Run the algorithm starting from the shapes {r1, . . . , rM−1, rM + 1} with
initial scale θ and weights {β1, . . . , βM−1, βM} equal to the final estimates
of the previous execution of the EM algorithm. Repeat this step for as long
as the log-likelihood improves, each time replacing the old set of parameters
by the new ones. This procedure is then applied on the (M − 1)th shape
and so forth until all the shapes are treated.

(ii) Run the algorithm starting from the shapes {r1 − 1, r2, . . . , rM} with ini-
tial scale θ and weights {β1, β2, . . . , βM} the final estimates of the previous
execution of the EM algorithm. Repeat this step for as long as the log-
likelihood improves, each time replacing the old set of parameters by the
new ones. This procedure is then applied on the 2nd shape and so forth
until all the shapes are treated.

(iii) Repeat the loops described in the previous steps until the log-likelihood can
no longer be increased.

Using this algorithm we eventually reach a local maximum of the log-likelihood,
by which we mean that the fit can no longer be improved by either increasing or
decreasing any of the rj .

2.4.3 Reducing the number of Erlangs

Too many Erlangs in the mixture will result in an issue of overfitting, which
is always a problem in statistical modeling. A decision rule such as Akaike’s
information criterion (AIC, Akaike, 1974) or Schwartz’s Bayesian information
criterion (BIC, Schwarz, 1978) helps to decide on the value of M . Models with
smaller AIC and BIC values are preferred. Any other information criterion (IC)
or objective function could be optimized depending on the purpose for which the
model is used.

The problem of testing for the number of components is of both theoretical
and practical importance and has attracted considerable attention of many studies
over the years and still is a major contemporary issue in a mixture modeling
context where the underlying population can be conceptualized as being composed
of a finite number of subpopulations. Since mixtures of Erlangs are employed
here as a semi-parametric density estimation technique and not as model-based
clustering, the commonly used criteria of AIC and BIC are adequate for choosing
the number of components (McLachlan and Peel, 2001).

We use a backward stepwise search. As mixtures of Erlangs are dense in the
space of positive continuous distributions, we start from a close-fitting mixture of
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M Erlangs resulting from the shape adjustment procedure described in Section
2.4.2 and compute the value of the IC. We next reduce the number of Erlangs M in
the mixture by deleting the mixture component of which the shape rj has smallest
weight βj , refit the scale and weights using the EM algorithm and readjust the
shapes using the same shape adjustment procedure. If the resulting fit with M−1
Erlangs attains a lower value of the IC, the new parameter values replace the old
ones. We continue reducing the number of Erlangs in the mixture until the value
of the IC does no longer decrease by deleting an additional mixture component.

A backward selection has the advantage of providing initial values close to the
maximum likelihood estimates of the new set of shapes which greatly reduces the
run time (Lee and Lin (2010)). In contrast, by using a forward stepwise procedure
it is not clear which additional shape parameter to use and how the parameters
from the previous run can be used to provide useful information on parameter
initialization.

As a guideline, we recommend to start from an initial choice for the number
of Erlangs M and a spread s resulting in a close-fitting or even overfitting of the
data.

2.4.4 Compare the resulting fit using different initializing
parameters

Since the log-likelihood has multiple local maxima, the value of the initializing
parameters M and s can influence the result. Therefore, it is wise to compare
the final fits, after the shape adjustment procedure and reduction of the number
of Erlangs using an IC, starting from different choices for the initial number of
Erlangs M and/or the spread factor s in the initial step. Tuning of such initializing
parameters is common in different numerical algorithms and fitting strategies as
well (Hastie et al., 2009). Specifically for the case of mixture of Erlangs, many
values for the tuning parameters M and s can lead to a satisfying resulting fit,
while using a different mixture of Erlangs representation. This is illustrated in the
first data example (Section 2.5.1, Table 2.1). In order not to limit the flexibility of
the fitting procedure, we do not prefix the value of M and s up front and do not
propose any stringent rule. The examples in Section 2.5 show how a small search
for these values is often sufficient to obtain satisfactory results. The freedom of
doing an even wider search is left as an option to the user.
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2.5 Examples

The usefulness of the proposed fitting procedure is demonstrated using several
examples. A first example involves simulated data from a bimodal distrubution
which we censor and truncate allowing us to compare the original density and
the entire uncensored and untruncated sample to the fitted mixture of Erlangs.
The second example illustrates the use of mixtures of Erlangs to represent right-
censored unemployment durations. In the third example, we illustrate the use of
mixtures of Erlangs in actuarial science in the context of loss modeling. We fit a
mixture of Erlang distribution to truncated claim size data and demonstrate how
the fitted mixture can be used to analytically price reinsurance contracts. In the
final example, we generate data from a generalized Pareto distribution to explore
limitations in modeling heavy-tailed distributions.

2.5.1 Simulated censored and truncated bimodal data

We generate a random sample of 5000 observations from the bimodal mixture of
gamma distributions with density function given by

fu(x) = 0.4f(x; r = 5, θ = 0.5) + 0.6f(x; r = 10, θ = 1) . (2.18)

Next we truncate the data by rejecting all observations beneath the 5% sample
quantile or above the 95% sample quantile. The remaining 4500 data points are
subsequently being right censored by generating 4500 observations from another
mixture of gamma distributions with density function

frc(x) = pf(x; r = 5, θ = 2/3) + (1− p)f(x; r = 9, θ = 1.25) , (2.19)

with p = 0.4. The resulting data set is composed of 2595 uncensored and 1905
right censored data points, and is used to calibrate the Erlang mixture, keeping
the lower and upper truncation into account.

Using the automatic search from Section 2.4.4 we start from M = 10 Erlangs
in the mixture and let the spread factor s used in the initial step range from 1 to
10. AIC is used to decide upon the number of Erlangs to use in the mixture as
explained in Section 2.4.3. The right censored data points are treated as being
observed at the initialization in (2.10). The different values of the initializing
spread all lead to a different final Erlang mixture, which are reported in Table
2.1. This illustrates the importance of varying the initial spread. Based on the
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AIC and BIC values (and plots of the fits not shown here), the different models
all represent the data quite well.

Table 2.1: Demonstration of initialization and fitting procedure on the data gen-
erated from (18). Starting point is a mixture of 10 Erlangs. The
initial spread factor s ranges from 1 to 10. The superscripts in the
last two columns represent the preference order according to that in-
formation criterium.

s r α θ AIC BIC
1 3; 12 0.46; 0.54 0.83 13961.095 13993.151

2 4; 14; 18 0.44; 0.34; 0.22 0.63 13956.312 14001.193

3 6; 15; 23; 31 0.39; 0.12; 0.35; 0.15 0.41 13959.513 14017.224

4 5; 15; 21 0.42; 0.20; 0.38 0.51 13955.611 14000.502

5 9; 15; 29; 43; 58 0.23; 0.17; 0.14; 0.31; 0.15 0.22 13961.034 14031.565

6 8; 14; 29; 43; 59 0.21; 0.20; 0.15; 0.31; 0.13 0.22 13962.636 14033.166

7 14; 23; 34; 45; 58; 74; 96 0.20; 0.17; 0.05; 0.07; 0.14; 0.24; 0.13 0.13 13970.2510 14066.4210

8 10; 16; 24; 40; 55; 69; 89 0.12; 0.18; 0.11; 0.10; 0.16; 0.21; 0.12 0.15 13966.948 14063.118

9 11; 18; 28; 46; 63; 79; 101 0.11; 0.19; 0.11; 0.10; 0.17; 0.21; 0.11 0.13 13969.239 14065.419

10 13; 21; 32; 50; 67; 84; 107 0.14; 0.18; 0.09; 0.10; 0.17; 0.21; 0.11 0.12 13966.637 14062.817

The lowest AIC value was reached using spread factor s = 4 with a corre-
sponding mixture of 3 Erlangs. The parameter estimates of this final model are
given in Table 2.2.

Table 2.2: Parameter estimates of the mixture of 3 Erlangs fitted to the censored
and truncated data with underlying density (2.18).

rj αj θ
5 0.4206869 0.5081993
15 0.2018598
21 0.3774533

In order to verify the goodness-of-fit, we might consider analytical tests such as
the Kolmogorov-Smirnov test. However, the form of the test statistic and the cor-
responding distribution is not at all obvious in a censored and truncated setting.
For the case of power-law distributions, Clauset et al. (2009) used Kolmogorov-
Smirnov tests to evaluate whether the hypothesized distribution adequately de-
scribes the tail. Dufour and Maag (1978) modify the form of the test statis-
tic to allow for truncated and censored data. Guilbaud (1988) derive an exact
Kolmogorov-Smirnov test for left-truncated and/or right-censored data. In an
actuarial context, Chernobai et al. (2014) discuss goodness-of-fit tests for left-
truncated loss samples. We mainly focus on graphical goodness-of fit evaluation
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in this chapter.
A graphical comparison of the fitted distribution and the originally generated

data can be found in Figure 2.1. We compare the fitted mixture of Erlangs density
to the true density (2.18) and a histogram of all 5000 generated data points before
truncation and censoring in the left plot in Figure 2.1. The right plot in Figure 2.1
compares the truncated mixture of Erlangs density to the true truncated density
and a histogram of the 4500 data points after truncation and before censoring.
The fitted mixture of Erlangs density shows to be a very close approximation of
the true density. Varying the spread from 1 to 10 in the initial mixture of 10
Erlangs is sufficient to obtain a satisfactory result, so there is no need to increase
the number of Erlangs in the initial step.
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Figure 2.1: Graphical comparison of the density of the fitted mixture of 3 Er-
langs, the true underlying density (2.18) and the histogram of the
generated data before censoring and truncation (left) and of the trun-
cated density of the fitted mixture of 3 Erlangs, the true truncated
density and the histogram of the generated data after truncated and
before censoring (right).

In actuarial practice, loss data can sometimes be of multimodal nature due to
the fact that the property and casualty losses often come from multiple sources.
Clearly, using standard parametric distributions will result in unsatisfactory ap-
proximations as they are incapable of reflecting the multimodal characteristic.
Moreover, applying straightforward estimation techniques may lead to non-con-
vergence issues due to the censoring and truncation. On the contrary, convergence
is guaranteed in the presented EM algorithm for mixtures of Erlangs and captures
the bimodality of the data very flexibly.

Next, we investigate the sensitivity with respect to the level of censoring in
the data. To that end, we fix the data generated from (2.18), truncate them at
the 5% and 95% sample quantile and vary the value of the mixing weight p in the
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density (2.19) of the right censoring distribution from 0 to 1 by 0.1. Let f(x) and
F (x) denote the true density and distribution function and f̂(x) and F̂ (x) the
estimated mixture of Erlangs density and distribution function. We measure the
performance of both the underlying and the truncated mixture of Erlangs density
estimator in approximating the underlying and the truncated true density by
calculating the L1 and L2 norms:

L1 =
∫ ∞

0

∣∣∣f̂(x)− f(x)
∣∣∣ dx

L1
t =

∫ tu

tl

∣∣∣∣∣ f̂(x)
F̂ (tu)− F̂ (tl)

− f(x)
F (tu)− F (tl)

∣∣∣∣∣ dx

L2 =
(∫ ∞

0

(
f̂(x)− f(x)

)2
dx

)1/2

L2
t =

∫ tu

tl

(
f̂(x)

F̂ (tu)− F̂ (tl)
− f(x)

F (tu)− F (tl)

)2

dx

1/2

.

For each value of p in the right censoring distribution (2.19), we generate 100
censoring samples of size 4500 and each time fit an Erlang mixture to the right
censored data set using the automatic search starting from M = 10 Erlangs in
the mixture and letting the initial spread s vary from 1 to 10. The averages of
the performance measures over the 100 best-fitting resulting mixtures are shown
in Table 2.3. The L1 and L2 norms over the truncation interval deteriorate when
increasing the censoring level, but remain quite low. This reveals that the per-
formance of the estimator remains excellent when the level of censoring increases,
except at the highest level where the estimated Erlang mixture is still bimodal
but the second mode and the tail of the true density are underestimated. The
L1 and L2 norms over the entire positive real line do not run as parallel with
the censoring level as the truncated versions. Note in this context the limitations
of accurately estimating the density outside of the truncation interval, since no
data has been observed in that region. One should hence not rely on probability
statements made using the fitted Erlang mixture outside of the data range.
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Table 2.3: Results of the sensitivity analysis with respect to the level of censor-
ing. For each value of p in the right censoring distribution (2.19),
we generate 100 censoring samples and report the average censoring
level and average performance measures of the best-fitting mixtures of
Erlang distributions.

p censoring % L1 L2 L1
t L2

t

0.0 0.2172 0.0862 0.0227 0.0266 0.0097
0.1 0.2695 0.0594 0.0170 0.0280 0.0099
0.2 0.3224 0.0740 0.0197 0.0278 0.0099
0.3 0.3753 0.0864 0.0226 0.0309 0.0109
0.4 0.4289 0.1438 0.0343 0.0329 0.0114
0.5 0.4806 0.1129 0.0277 0.0367 0.0126
0.6 0.5330 0.0905 0.0235 0.0412 0.0140
0.7 0.5844 0.1527 0.0349 0.0465 0.0157
0.8 0.6383 0.1597 0.0377 0.0594 0.0199
0.9 0.6903 0.1787 0.0416 0.0705 0.0236
1.0 0.7426 0.5156 0.1199 0.2276 0.0997

2.5.2 Unemployment duration

We examine the economic data from the January Current Population Survey’s
Displaced Workers Supplements (DWS) for the years 1986, 1988, 1990, and 1992
which was first analyzed in McCall (1996). A thorough discussion of this data
set is available in Cameron and Trivedi (2005). The variable under consideration
is unemployment duration (spell) or more accurately joblessness duration, mea-
sured in two-week intervals. All other covariates in the data set are ignored in the
analysis. Following Cameron and Trivedi (2005), a spell is considered complete
if the person is re-employed at a full-time job (CENSOR1 = 1) and right-censored
otherwise (CENSOR1 = 0). This results in 1073 uncensored data points and 2270
right censored data points.

The parameter estimates of the Erlang mixture, obtained by using the auto-
matic search procedure starting from M = 10 Erlangs in the mixture with spread
factor s in the initial step ranging from 1 to 10, are given in Table 2.4. AIC is
again used to decide upon the number of Erlangs in the mixture and the right
censored data points are treated as being observed at initialization. The lowest
AIC value was obtained with a mixture of 8 Erlangs. This optimal choice of
shapes was reached using spread factor s = 10.
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Table 2.4: Parameter estimates of the mixture of 8 Erlangs fitted to the right-
censored unemployment data.

rj αj θ
8 0.10563305 0.1477264
17 0.09443584
33 0.08578746
50 0.09099055
73 0.04273362
99 0.14814091
135 0.07546787
199 0.35681069

The Kaplan-Meier estimator (Kaplan and Meier (1958)), also known as the
product limit estimator, is the standard non-parametric estimator of the survival
function in case of right censored data. The resulting survival curve is a step
function with jumps at the observed event times of which the size not only depends
on the number of events observed at each event time, but also on the pattern of the
censored observations prior to that event time. In order to graphically evaluate
the fit, we compare the Kaplan-Meier survival curve, along with 95% confidence
bounds, to the survival function of the estimated Erlang mixture in Figure 2.2.
Marks are added on the Kaplan-Meier estimate to indicate censoring times. The
fitted survival function provides a smooth fit of the data, closely resembling the
non-parametric estimate.
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Figure 2.2: Graphical comparison of the survival function of the fitted mixture
of 8 Erlangs and the Kaplan-Meier estimator with 95% confidence
bounds for the right-censored unemployment data.

As an illustration, we also compare our approach to two commonly used para-
metric models, the generalized Pareto distribution (GP) and the generalized beta
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distribution of the second kind (GB2). In Figure 2.2, we see how mixtures of
Erlangs offer much more flexibility and lead to a more appropriate fit for these
data at the cost of requiring more parameters. However, AIC and BIC strongly
prefer the mixture of Erlangs approach, see Table 2.5.

Table 2.5: Comparison of information criteria for the different models fitted to
the right-censored unemployment data.

Model AIC BIC
Mixtures of Erlangs 8066.281 8170.230
Generalized Pareto (GP) 8733.718 8745.947
Generalized beta 2 (GB2) 8280.168 8304.627

2.5.3 Secura Re, Belgian insurance data

The Secura Re data set discussed in Beirlant et al. (2004) contains 371 automobile
claims from 1988 until 2001 gathered from several European insurance companies.
The data are uncensored, but left truncated at 1 200 000 since a claim is only
reported to the reinsurer if the claim size is at least as large as 1 200 000 euro.
The sizes of the claims are corrected among others for inflation. Based on these
observations, the reinsurer wants to calibrate a model in order to price reinsurance
contracts.

The search procedure using AIC prefers a mixture of only two Erlangs with
shapes 5 and 16. The parameter estimates of this best-fitting mixture are shown
in Table 2.6. In Figure 2.3 (left) we compare the histogram of the truncated
data to the fitted truncated density. Figure 2.3 (right) illustrates that the trun-
cated survival function of the mixture of two Erlangs perfectly coincides with the
Kaplan-Meier estimate.

Table 2.6: Parameter estimates of the mixture of 2 Erlangs fitted to the left-
truncated claim sizes in the Secura Re data set.

rj αj θ
5 0.97103229 360 096.1
16 0.02896771
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Figure 2.3: Graphical comparison of the truncated density of the fitted mixture
of 2 Erlangs and the histogram of the left-truncated claim sizes (left)
and of the truncated survival function and the Kaplan-Meier estima-
tor with 95% confidence bounds (right) for the Secura Re data set.

In Figure 2.4, we validate the fit in the tail by plotting the QQ-plot on the
left and the log-log plot of the empirical truncated survival function (black dots)
and the truncated survival function of the best-fitting Erlang mixture (red line)
on the right. Both figures show how the mixture of only two Erlangs achieves a
adequate approximation in the tail.
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Figure 2.4: QQ-plot of the empirical quantiles and the quantiles of the fitted
mixture of 2 Erlangs with identity line (left) and log-log plot of
the empirical truncated survival function and the truncated survival
function of the fitted Erlang mixture (right) for the Secura Re data
set.
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Following Beirlant et al. (2004, p. 188), we use the calibrated Erlang mixture
to price an excess-of-loss (XL) reinsurance contract, where the reinsurer pays for
the claim amount in excess of a given limit. The net premium Π(R) of such a
contract with retention level R > 1 200 000 is given by

Π(R) = E((X −R)+ | X > 1 200 000)

where X denotes the claim size and (·)+ = max(·, 0). In case X follows a mixture
of M Erlang distributions, where we assume without loss of generality ri = i for
i = 1, . . . , M , the net premium is

Π(R) = θe−R/θ

1− F (1 200 000;α, r, θ)

M−1∑
n=0

(
M−1∑
k=n

Ak

)
(R/θ)n

n!

= θ2

1− F (1 200 000;α, r, θ)

M∑
n=1

(
M−1∑

k=n−1
Ak

)
f(R; n, θ) , (2.20)

with Ak =
∑M

j=k+1 αj for k = 0, . . . , M − 1. The derivation of this property can
be reconstructed using Willmot and Woo (2007) or Klugman et al. (2013, p. 21).
In Table 2.7, we compare the non-parametric, Hill and Generalized Pareto (GP)
based estimates of Π(R) for the Secura Re data set from Table 6.1 in Beirlant
et al. (2004, p. 191) to the estimates obtained using formula (2.20). The maxi-
mum claim size observed in the data set equals 7 898 639 which is the only data
point on which the non-parametric estimate of the net premium with retention
level R = 7 500 000 is based. The non-parametric estimate corresponding to re-
tention level R = 10 000 000 is hence zero. The fitted Erlang mixture allows us
to estimate the net premium using intrinsically all data points, but postulates a
lighter tail compared to the Pareto-type alternatives since Erlang mixtures have
an asymptotically exponential tail (Neuts (1981, p. 62)). Both the estimates based
on the extreme value methodology and those based on the Erlang mixture keep
pace with the non-parametric ones, but at the high-end of the sample range, the
estimators differ strongly, as implied by the different tail behavior of the three
approaches. The reinsurance actuary should carefully investigate the right tail
behavior of the data in order to choose his approach.

Besides modeling the tail of the claim size distribution above a certain thresh-
old, Beirlant et al. (2004, p. 198) also estimate a global statistical model to de-
scribe the whole range of all possible claim outcomes for the Secura Re data set.
This is needed when trying to estimate Π(R) for values of R smaller than the
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Table 2.7: Non-parametric, Hill, GP and Mixture of Erlangs-based estimates for
Π(R).

R Non-Parametric Hill GP Mixture of Erlangs
3 000 000 161 728.1 163 367.4 166 619.6 163 987.7
3 500 000 108 837.2 108 227.2 111 610.4 110 118.5
4 000 000 74 696.3 75 581.4 79 219.0 77 747.6
4 500 000 53 312.3 55 065.8 58 714.1 55 746.3
5 000 000 35 888.0 41 481.6 45 001.6 39 451.6
7 500 000 1074.5 13 944.5 16 393.3 4018.6

10 000 000 0.0 6434.0 8087.8 159.6

threshold above which the extreme value distribution is fit. Based on the mean
excess function, the authors propose the use of a mixture of an exponential and a
Pareto distribution (Exp-Par). Instead of having to use this body-tail approach
(a form a splicing, see Klugman et al. (2012)) explicitly, the implemented shape
adjustment and reduction techniques when fitting the Erlang mixture have guided
us to a mixture with two components of which the first one represents the body
of the distribution and the second represents the tail. The fitting procedure for
Erlang mixtures is able to make this choice implicitly in a data driven way, lead-
ing to a close representation of the data. In Table 2.8 we compare the estimated
net premiums from Table 6.2 in Beirlant et al. (2004, p. 198) obtained using the
Exp-Par model to the non-parametric and mixture of Erlangs estimates. The es-
timates based on the fitted Erlang mixture follow the non-parametric ones more
closely than those obtained using the Exp-Par model.

Table 2.8: Non-parametric, Exp-Par and Mixture of Erlangs-based estimates for
Π(R).

R Non-Parametric Exp-Par Mixture of Erlangs
1 250 000 981 238.0 944 217.8 981 483.1
1 500 000 760 637.6 734 371.6 760 912.9
1 750 000 583 403.6 571 314.1 582 920.1
2 000 000 445 329.8 444 275.5 444 466.6
2 250 000 340 853.2 344 965.2 339 821.4
2 500 000 263 052.7 267 000.7 262 314.6

Note that when R = 1 200 000, the net premium equals the mean excess loss
E(X −R | X > R), which is called the mean residual lifetime in survival context.
(Klugman et al., 2013, p. 20) show that the distribution of the excess loss or
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residual lifetime is again a mixture of M Erlangs with the same scale θ and
different weights which we can compute analytically:

α∗
j =

∑M−j
n=0 αn+jf(R; n + 1, θ)∑M−1

n=0 Anf(R; n + 1, θ)
for j = 1, . . . , M .

2.5.4 Simulated generalized Pareto data

When modeling claim sizes, the insurer or reinsurer is often confronted with heavy
tailed distributions. To safeguard the company against extreme losses that might
jeopardize their solvency, an accurate description of the upper tail of the claim
size distribution is of utmost importance. In order to explore the limits of Erlang
mixtures in approximating heavy-tailed distribution using the presented method,
we consider the generalized Pareto distribution with density

fX(x; µ, σ, ξ) = 1
σ

(
1 + ξ(x− µ)

σ

)(− 1
ξ −1
)

for x > µ . (2.21)

with location µ > 0, scale σ > 0 and shape ξ > 0. The generalized Pareto
family is known for its tail thickness and is used for insurance branches with a
high probability of large claims, such as liability insurance. The shape parameter
coincides with the extreme value index (EVI) and determines the heaviness of the
tail (Beirlant et al., 2004). The higher the value of the EVI, the heavier the tail.
The variance is finite for ξ < 1/2 and the mean is finite for ξ < 1. In general
is the kth moment finite for ξ < 1/k. When modeling the Secura Re data of
the previous example using Pareto-type modeling, Beirlant et al. (2004) estimate
the corresponding EVI around 0.3. Using the presented method, we were able to
obtain a very good approximation in the tail with a mixture of Erlangs. We now
want to illustrate what happens when the EVI further increases, by generating
1000 observations from a generalized Pareto distribution with location µ = 10,
scale σ = 2 and shape ξ = 1. In this extreme setting, the EVI equals 1 and
none of the moments exist. Location µ = 10 implies that the distribution is left
truncated at 10.

In order to obtain a decent approximation of this sample, the initial values of
the number of Erlangs M and the spread s become even more important. Due
to the fact that the data is very skew and heavy-tailed, the maximum in the
data set is extremely high, i.e. max(x) = 10 636.49, and many of the initial shape
parameters in the mixture will get a corresponding weight equal to zero. To ensure
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that we start our calibration procedure with sufficient non-zero shape parameters,
we decided – after some exploratory choices for M and s – to try all combinations
of spread s between 1 and 10 and initial number of Erlangs M =

⌈
max(x)

i

⌉
for

i = 1, . . . , 10, leading to initial mixtures with 30 to 85 non-zero weight Erlang
components. The best-fitting Erlang mixture according to AIC was obtained
starting from M =

⌈
max(x)

7

⌉
= 1520 and s = 4, corresponding to a mixture of 34

non-zero weight Erlang components at the initial step. The parameter estimates
of the final mixture of 16 Erlangs, after the shape adjustment procedure and the
reduction of the number of Erlangs based on AIC, are given in Table 2.9.

Table 2.9: Parameter estimates of the mixture of 16 Erlangs fitted to the simu-
lated generalized Pareto data.

rj αj θ
2 0.9973387302 1.334924
13 0.0016914393
20 0.0002066144
28 0.0003513364
47 0.0001826860
74 0.0000809294
120 0.0000458669
163 0.0000079065
211 0.0000286491
286 0.0000073181
488 0.0000073471
613 0.0000219147
3338 0.0000073155
4472 0.0000073155
6307 0.0000073155
7964 0.0000073155

The underlying untruncated mixture contains 16 components and is domi-
nated by an Erlang distribution with shape 2, modeling the main bulk of the
data, whereas the approximation of the tail requires a combination of 15 Erlangs
with shapes ranging from 13 to 7964. A graphical comparison of the fitted Erlang
mixture and the underlying true distribution up to the 95% sample quantile is
shown in Figure 2.5. The QQ-plot in Figure 2.6 (left) shows that this mixture
does a great job in fitting the sample in the tail. However, the log-log plot of the
empirical truncated survival function and the truncated survival function of the
best-fitting Erlang mixture in Figure 2.6 (right) reveals that this approximation is
obtained by letting separate Erlang components with a very small weight coincide
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Figure 2.5: Graphical comparison of the truncated density of the fitted mixture
of 16 Erlangs and the histogram (left) and of the truncated sur-
vival function and the Kaplan-Meier estimator with 95% confidence
bounds (right) for the simulated generalized Pareto data up to the
95% empirical quantile.

with the largest data points that lie very far apart. Moreover, all moments of a
finite mixture of Erlangs are finite whereas the expected value of the underlying
distribution is infinite. We thus conclude that in this extreme setting with EVI
equal to 1, the fitted finite mixture of Erlang distributions follows the observed
data set closely, but is not able to extrapolate the heaviness in the tail in com-
parison to the extreme value methodology based on the Fisher-Tippett-Gnedenko
theorem.
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Figure 2.6: QQ-plot of the empirical quantiles and the quantiles of the fitted
mixture of 16 Erlangs with identity line (left) and log-log plot of
the empirical truncated survival function and the truncated survival
function of the fitted Erlang mixture (right) for the simulated gen-
eralized Pareto data.
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2.6 Discussion

We extend the Lee and Lin (2010) EM algorithm for fitting mixtures of Erlangs
with a common scale parameter to censored and truncated data. The EM algo-
rithm able to deal with censored and truncated data remains a simple iterative
algorithm. The initialization of the parameters can be done in a similar way as
in Lee and Lin (2010) based on the denseness property (Tijms, 1994, p. 163) and
provides close starting values making the algorithm converge fast. The shape ad-
justment procedure explores the parameter space in a clever way such that, when
adjusting and reducing the shapes, the previous estimates for the scale and the
weights provide a very close approximation to the maximum likelihood estimates
corresponding to the new set of shapes, which greatly reduces the run time. Ex-
tending Lee and Lin (2010), we suggest the use of a spread factor to achieve a
wider spread for the shapes at the initial step. We recommend comparing the
resulting fits starting from different initial values obtained by varying the spread
factor and changing the initial number of Erlangs.

We implement the fitting procedure in R and show how mixtures of Erlangs
can be used to adequately represent any univariate distribution in a wide variety
of applications where data is allowed to be censored and truncated. We focus on
the domain of actuarial science, where claim severity data is often censored and
truncated due to policy modifications such as deductibles and policy limits. The
use of mixtures of Erlangs offers on the one hand the flexibility of nonparametric
density estimation techniques to describe the insurance losses and on the other
hand the feasibility to analytically quantify the risk. The examples on several
simulated and real data sets illustrate the effectiveness of our proposed algorithm
and demonstrate the approximation strength of mixtures of Erlangs.

Future research may explore incorporating regressor variables in the mixture
of Erlangs with common scale and introducing the flexibility of this approach
in a regression context. We detected some limitations of mixtures of Erlangs in
approximating heavy-tailed distributions and suggest combining our methodology
with the extreme value methodology using a body-tail approach (Lee et al., 2012;
Pigeon and Denuit, 2011). Adjusting the EM algorithm tailored to the class of
multivariate mixtures of Erlangs, introduced by Lee and Lin (2012), to the case
of censored and truncated data is another appealing extension.
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2.7 Appendix A: Denseness

Theorem 2.7.1. (Tijms, 1994, p. 163) The class of mixtures of Erlang distri-
butions with a common scale parameter is dense in the space of distributions on
R+. More specifically, let G(x) be the cumulative distribution function of a pos-
itive random variable. Define the following cumulative distribution function of a
mixture of Erlang distributions with a common scale parameter θ > 0,

F (x; θ) =
∞∑

j=1
αj(θ)F (x; j, θ) ,

where F (x; j, θ) denotes the cumulative distribution function of an Erlang distri-
bution with shape j and scale θ,

F (x; j, θ) = 1−
j−1∑
n=0

e−x/θ (x/θ)n

n! ,

and the mixing weights are given by

αj(θ) = G(jθ)−G((j − 1)θ) for j = 1, 2, . . . .

Then
lim
θ→0

F (x; θ) = G(x) ,

for each point x at which G(·) is continuous.

2.8 Appendix B: Partial derivative of Q

We first introduce the lower incomplete gamma function

γ(s, x) =
∫ x

0
zs−1e−zdz ,

by which we can write the cumulative distribution function of an Erlang distri-
bution as

F (x; r, θ) =
∫ x

0

zr−1e−z/θ

θr(r − 1)! dz = 1
(r − 1)!

∫ x/θ

0
ur−1e−udu = γ(r, x/θ)

(r − 1)! . (2.22)
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In order to maximize Q(Θ; Θ(k−1)) with respect to θ, we set the first order partial
derivative at θ(k) equal to zero

∂Q(Θ; Θ(k−1))
∂θ

∣∣∣∣∣
θ=θ(k)
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− n

θ2

M∑
j=1

β
(k)
j

(
tl
)rj

e−tl/θ − (tu)rj e−tu/θ

θrj−1(rj − 1)! (F (tu; rj , θ)− F (tl; rj , θ))

∣∣∣∣∣∣
θ=θ(k)

= 0 ,

where we used expression (2.22) of the cumulative distribution of an Erlang.





Chapter 3

Multivariate mixtures of Erlangs

for density estimation under

censoring

Abstract

Multivariate mixtures of Erlang distributions form a versatile, yet analyti-
cally tractable, class of distributions making them suitable for multivariate
density estimation. We present a flexible and effective fitting procedure
for multivariate mixtures of Erlangs, which iteratively uses the EM algo-
rithm, by introducing a computationally efficient initialization and adjust-
ment strategy for the shape parameter vectors. We furthermore extend the
EM algorithm for multivariate mixtures of Erlangs to be able to deal with
randomly censored and fixed truncated data. The effectiveness of the pro-
posed algorithm is demonstrated on simulated as well as real data sets.

This chapter is based on Verbelen, R., Antonio, K., and Claeskens, G. (2016).
Multivariate mixtures of Erlangs for density estimation under censoring. Lifetime
Data Analysis, 22(3):429-455.

3.1 Introduction

We present an estimation technique for fitting multivariate mixtures of Erlang
distributions (MME). We suggest an efficient initialization method and adjust-

43
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ment strategy for the values of the shape parameter vectors of an MME, which
has been underexposed in the literature. The fitting procedure is also extended
to take random censoring and fixed truncation into account. Data are censored in
case you only observe an interval in which a data point is lying without knowing
its exact value. Truncation entails that it is only possible to observe the data of
which the values lie in a certain range. Censoring and/or truncation is often the
case in applications such as loss modeling (finance and actuarial science), clini-
cal experiments (survival/failure time analysis), veterinary studies (e.g. mastitis
studies), and duration data (econometric studies).

The class of MME is introduced by Lee and Lin (2012). MME form a highly
flexible class of distributions as they are dense in the space of positive continu-
ous multivariate distributions in the sense of weak convergence, extending this
property of the univariate class (Tijms, 1994). An overview of the analytical and
distributional properties of mixtures of Erlangs can be found in Klugman et al.
(2013), Willmot and Lin (2011) and Willmot and Woo (2007). Parameter esti-
mation in the univariate case is treated in Lee and Lin (2010) and extended to be
able to deal with randomly censored and fixed truncated data in Verbelen et al.
(2015).

Mixtures of Erlangs have received most attention in the field of actuarial sci-
ence. Cossette et al. (2013a) model the joint distribution of a portfolio of de-
pendent risks using univariate mixtures of Erlangs as marginals along with the
Farlie-Gumbel-Morgenstern (FGM) copula. Cossette et al. (2013b) and Mailhot
(2012) study the bivariate lower and upper orthant Value-at-Risk and use MME
as an illustration. Willmot and Woo (2015) study the analytical properties of the
MME class. They motivate the use of MME in actuarial science and illustrate
how their tractability leads to closed-form expressions.

The use of MME should be regarded as a multivariate density estimation
technique, not as a type of model-based clustering. The MME model can be
seen as semiparametric, since the mixture components have a specific parametric
form, whereas the mixing weights can have a nonparametric nature, and is an
interesting alternative to the use of copulas, which is the dominant choice to model
multivariate data in a two stage procedure, separating the dependence structure
from the marginal distributions (see e.g. Joe, 1997; Nelsen, 2006). In contrast,
MME are able to model the multivariate data directly on the original scale. The
MME model enjoys many desirable properties of a multivariate model as listed
by Joe (1997, p. 84), see Lee and Lin (2012), with regard to interpretability,
closure, flexibility and wide range of dependence, and closed-form representation,
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often not satisfied for the commonly used copula structures. Lee and Lin (2012)
demonstrate the flexibility of MME by fitting 12-dimensional data generated from
a multivariate lognormal distribution and extremely dependent bivariate data
with Spearman’s rho very close to 1 or −1.

An extensive literature exists on mixtures of multivariate normals (see e.g.
McLachlan and Peel, 2001). Lee and Scott (2012) discuss the estimation of mul-
tivariate Gaussian mixtures in case the data can be randomly censored and fixed
truncated. Due to the limitations of Gaussian mixtures, such as the difficulty
in modeling skewed data, non-Gaussian approaches have received an increasing
interest over the last years. Important examples include mixtures of multivari-
ate t-distributions (see e.g. Peel and McLachlan, 2000), mixtures of multivariate
skew-normal distributions (see e.g. Lin, 2009), and mixtures of multivariate skew-t
distributions (see e.g. Lee and McLachlan, 2014). All of these mixture models in-
volve modeling real-valued multivariate random variables, whereas in this chapter
we consider multivariate positive-valued random variables.

Lee and Lin (2012) show in Theorem 2.3 that a finite multivariate Erlang
mixture is a multivariate phase-type distribution, a generalization of the class of
univariate phase-type distributions introduced by Assaf et al. (1984). Parameter
estimation for phase-type distributions in the bivariate case (Eisele, 2005; Zadeh
and Bilodeau, 2013), as in the univariate case (Asmussen et al., 1996; Olsson,
1996), uses the expectation-maximization (EM) algorithm, first introduced by
Dempster et al. (1977)

The EM algorithm forms the key to fit an MME to multivariate positive data.
Taking censoring and truncation into account when calibrating data using copu-
las is cumbersome, especially in more than two dimensions, due to complicated
forms of the likelihood (see e.g. Georges et al., 2001) which are hard to optimize
numerically. This is, as we will show, not the case for the MME class due to
the EM algorithm. As opposed to the traditional way of dealing with grouped
and truncated data using the EM algorithm (Dempster et al., 1977; McLachlan
and Krishnan, 2008, p. 66; McLachlan and Peel, 2001, p. 257; McLachlan and
Jones, 1988), we follow the approach of Lee and Scott (2012), as was done in the
univariate setting (Verbelen et al., 2015).

We demonstrate the effectiveness of our proposed algorithm and the practical
use of MME on a simulated data set, the old faithful geyser data and a four-
dimensional data set of interval and right censored udder quarter infection times,
each time highlighting one of the analytical aspects of MME.
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3.2 Multivariate Erlang mixtures with a common
scale parameter

In this section, we briefly revise the definition of a multivariate mixture of Er-
lang distributions with a common scale parameter and the denseness property of
this distributional class. These formulas are extended in Section 3.3.1 and 3.3.2
towards censoring and truncation.

The Erlang distribution is a positive continuous distribution with density func-
tion

f(x; r, θ) = xr−1e−x/θ

θr(r − 1)! for x > 0 , (3.1)

where r, a positive integer, is the shape parameter and θ > 0 the scale parameter
(the inverse λ = 1/θ is called the rate parameter). The cumulative distribution
function is obtained by integrating (3.1) by parts r times

F (x; r, θ) = 1−
r−1∑
n=0

e−x/θ (x/θ)n

n! = γ(r, x/θ)
(r − 1)! , (3.2)

using the lower incomplete gamma function defined as γ(s, x) =
∫ x

0 zs−1e−zdz.
A univariate Erlang distribution is in fact a gamma distribution of which the

shape parameter is a positive integer and can therefore be seen as the distribution
of a sum of i.i.d. exponential random variables. Lee and Lin (2012) define a d-
variate Erlang mixture as a mixture such that each mixture component is the
joint distribution of d independent Erlang distributions with a common scale
parameter θ > 0. The dependence structure is captured by the combination
of the positive integer shape parameters of the Erlangs in each dimension. We
denote the positive integer shape parameters of the jointly independent Erlang
distributions in a mixture component by the vector r = (r1, . . . , rd) and the set of
all shape vectors with non-zero weight by R. The mixture weights are denoted by
α = {αr |r ∈ R} and must satisfy αr > 0 and

∑
r∈R αr = 1. The density of a d-

variate Erlang mixture evaluated in x = (x1, . . . , xd) with xj > 0 for j = 1, . . . , d

can then be written as

f(x;α, r, θ) =
∑
r∈R

αrf(x; r, θ) =
∑
r∈R

αr

d∏
j=1

f(xj ; rj , θ)

=
∑
r∈R

αr

d∏
j=1

x
rj−1
j e−xj/θ

θrj (rj − 1)! . (3.3)
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The following property states that for any positive multivariate distribution
there exists a sequence of multivariate Erlang distributions that weakly converges
to the target distribution. The proof is given in the appendix of Lee and Lin
(2012).

Property 1 (Lee and Lin 2012). The class of multivariate Erlang mixtures of
form (3.3) is dense in the space of positive continuous multivariate distributions
in the sense of weak convergence. More specifically, let g(x) be the density func-
tion of a d-variate positive random variable with cumulative distribution function
G(x). For any given θ > 0, define the following d-variate Erlang mixture

f(x; θ) =
∞∑

r1=1
· · ·

∞∑
rd=1

αr(θ)
d∏

j=1
f(xj ; rj , θ) , (3.4)

with mixing weights

αr(θ) =
∫ r1θ

(r1−1)θ

· · ·
∫ rdθ

(rd−1)θ

g(x)dx . (3.5)

Then lim
θ→0

F (x; θ) = G(x) for each point x at which F is continuous.

In Property 1, for any given common scale θ > 0, an infinite multivariate
mixture of Erlangs in (3.4) is considered using combinations of shapes from 1
to infinity in each marginal dimension. The weights in (3.5) of the components
in the mixture are defined by integrating the density over the corresponding d-
dimensional rectangle of the d-dimensional grid formed by the shape parame-
ters multiplied with the common scale. When the value of the common scale θ

decreases, this grid becomes more refined and the sequence of Erlang mixtures
converges to the underlying cumulative distribution function.

Next to its flexibility, Lee and Lin (2012) show that it is easy to work ana-
lytically with this class of distributions due to the independence structure of the
Erlang distributions within each mixture component. This leads to explicit ex-
pressions of many distributional quantities such as the characteristic function, the
joint moments and bivariate measures of association (Kendall’s tau and Spear-
man’s rho). The authors further reveal interesting closure properties, such as
the fact that each p-variate marginal or conditional distribution with p 6 d can
again be written as a p-variate Erlang distribution. The same property holds for
the distribution of the multivariate excess losses (actuarial science context) or
multivariate residual lifetimes (survival analysis context). Furthermore, the dis-



48 Multivariate mixtures of Erlangs

tribution of the sum of the component random variables of an MME distributed
random variable is a univariate Erlang mixture distribution.

Willmot and Woo (2015) consider an extension of the MME class, allowing
different scale parameters in each dimension. However, in Proposition 1 they show
how a multivariate mixture of Erlangs distribution with different scale parameters
can be rewritten as a multivariate mixture of Erlangs distribution with a common
scale parameter, which is smaller than all original scales. We thus concentrate on
models with a common scale parameter.

3.3 Parameter estimation

The parameters of an MME to be estimated are the common scale parameter θ,
the mixture weights α = {αr |r ∈ R} and the set of corresponding shape param-
eter vectors R. Lee and Lin (2012) propose an EM algorithm in order to find the
maximum likelihood estimators for Θ = (α, θ), given a fixed set of shape param-
eter vectors R. Model selection for the number of mixture components and the
corresponding values of the shape parameter vectors is based on an information
criterion, similar to the univariate strategy of Lee and Lin (2010) and Verbelen
et al. (2015).

The two main novelties we present in this chapter are (i) an extension of the
EM algorithm to be able to deal with randomly censored and fixed truncated data
and (ii) a computationally more efficient initialization and adjustment strategy
for the shape parameter vectors in order to make the estimation procedure more
flexible and effective. The improvements (i) and (ii) allow us to analyze realistic
data with diverse forms of dependence in contrast to the simulated example in
Lee and Lin (2012) with a simple structure.

First we discuss how we represent a censored and truncated sample and evalu-
ate the expression of the likelihood. The form of the complete data log-likelihood
is given next, followed by the adjusted EM algorithm and a discussion on some
asymptotic properties. In Section 3.4, we present the initialization and selection
of the shape parameter vectors.

3.3.1 Randomly censored and fixed truncated data

We represent a censored sample, truncated to the fixed range [tl, tu], by X =
{ (li,ui)| i = 1, . . . , n}. The lower and upper truncation points are tl = (tl

1, . . . , tl
d)

and tu = (tu
1 , . . . , tu

d), which are common to each observation i = 1, . . . , n. The
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lower and upper censoring points are li = (li1, . . . , lid) and ui = (ui1, . . . , uid).
It holds that tl 6 li 6 ui 6 tu for i = 1, . . . , n. tl

j = 0 and tu
j = ∞ mean

no truncation from below and above for the jth dimension, respectively. The
censoring status for the jth dimension of observation i is determined as follows:

Uncensored: tl
j 6 lij = uij =: xij 6 tu

j

Left Censored: tl
j = lij < uij < tu

j

Right Censored: tl
j < lij < uij = tu

j

Interval Censored: tl
j < lij < uij < tu

j .

Thus, lij and uij should be interpreted as the lower and upper endpoints
of the interval that contains the jth element of observation i. A missing value
in dimension j for observation i can also be dealt with by setting lij = tl

j and
uij = tu

j , i.e. treating the missing value as a data point being interval censored
between the lower and upper truncation points.

The likelihood of a censored and truncated sample of a multivariate Erlang
distribution is given by

L(Θ;X ) =
n∏

i=1

∑
r∈R αr

∏d
j=1 f(lij , uij ; rj , θ)

P(tl 6Xi 6 tu; Θ)

with

f(lij , uij ; rj , θ) =

f(xij ; rj , θ) if lij = uij = xij

F (uij ; rj , θ)− F (lij ; rj , θ) if lij < uij ,

and

P(tl 6Xi 6 t
u; Θ) =

∑
r∈R

αr

d∏
j=1

[
F (tu

j ; rj , θ)− F (tl
j ; rj , θ)

]
.

The corresponding log-likelihood is

l(Θ;X ) =
n∑

i=1
ln

∑
r∈R

αr

d∏
j=1

f(lij , uij ; rj , θ)


−n ln

∑
r∈R

αr

d∏
j=1

[
F (tu

j ; rj , θ)− F (tl
j ; rj , θ)

] . (3.6)

This expression is however not workable as it involves the logarithm of a sum
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and cannot be used to easily find the maximum likelihood estimators for Θ for a
fixed set of positive integer shape parameters R.

3.3.2 Construction of the complete data likelihood

For an uncensored observation xi, truncated to [tl, tu], the probability density
function can be rewritten as a mixture

f(xi; tl, tu, Θ) = f(xi; Θ)
P(tl 6Xi 6 tu; Θ)

=
∑

r∈R αr

∏d
j=1 f(xij ; rj , θ)

P(tl 6Xi 6 tu; Θ)

=
∑
r∈R

αr ·
P(tl 6Xi 6 tu; r, θ)
P(tl 6Xi 6 tu; Θ)

·
∏d

j=1 f(xij ; rj , θ)
P(tl 6Xi 6 tu; r, θ)

=
∑
r∈R

βr · f(xi; tl, tu, r, θ) ,

for tl 6 xi 6 tu and zero otherwise. The mixing weights βr and component
density functions are given by, respectively,

βr = αr ·
P(tl 6Xi 6 tu; r, θ)
P(tl 6Xi 6 tu; Θ)

= αr ·
∏d

j=1
[
F (tu

j ; rj , θ)− F (tl
j ; rj , θ)

]∑
m∈R αm

∏d
j=1

[
F (tu

j ; mj , θ)− F (tl
j ; mj , θ)

] (3.7)

and

f(xi; tl, tu, r, θ) =
∏d

j=1 f(xij ; rj , θ)
P(tl 6Xi 6 tu; r, θ)

=
d∏

j=1

f(xij ; rj , θ)
F (tu

j ; rj , θ)− F (tl
j ; rj , θ)

. (3.8)

The weights βr are re-weighted versions of the original weights αr by means of the
probabilities of the corresponding mixture component to lie in the d-dimensional
truncation interval. The component density functions f(xi; tl, tu, r, θ) are trun-
cated versions of the original component density functions f(xi; r, θ).

The EM algorithm forms the solution to fit this finite mixture to the censored
and truncated data. The idea is to regard the censored sample X as being incom-
plete since the uncensored observations xi = (xi1, . . . , xid) and their associated
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component-indicators zi = {zir |r ∈ R} with

zir =


1 if observation xi comes from the mixture component (3.8)

corresponding to the shape parameter vector r

0 otherwise

(3.9)

for i = 1, . . . , n and r ∈ R, are not available. The complete data vector,
Y = {(xi, zi)|i = 1, . . . , n}, contains all uncensored observations xi and their
corresponding mixing component indicator zi. The log-likelihood of the complete
sample Y can then be written as

l(Θ;Y) =
n∑

i=1

∑
r∈R

zir ln
(
βrf(xi; tl, tu, r, θ)

)
. (3.10)

3.3.3 The EM algorithm for censored and truncated data

The EM algorithm finds the maximum likelihood estimators for Θ = (α, θ), given
a fixed set R of positive integer shape parameter vectors, based on a (possibly)
censored and truncated sample by iteratively repeating the following two steps.

E-step Conditional on the incomplete data X and using the current estimate
Θ(k−1) for Θ, we compute the expectation of the complete log-likelihood (3.10)
in the kth iteration of the E-step:

Q(Θ; Θ(k−1))

= E(l(Θ;Y) | X ; Θ(k−1))

=
n∑

i=1
E

[∑
r∈R

Zir ln
(
βrf(Xi; tl, tu, r, θ)

)∣∣∣∣∣ li,ui, t
l, tu; Θ(k−1)

]

=
n∑

i=1

∑
r∈R

z
(k)
ir E

[
ln
(
βrf(Xi; tl, tu, r, θ)

)∣∣Zir = 1, li,ui, t
l, tu; θ(k−1)

]

=
n∑

i=1

∑
r∈R

z
(k)
ir

ln(βr) +
d∑

j=1
(rj − 1)E

(
ln(Xij)

∣∣∣Zir = 1, lij , uij , tl
j , tu

j ; θ(k−1)
)

−1
θ

d∑
j=1

E
(

Xij

∣∣∣Zir = 1, lij , uij , tl
j , tu

j ; θ(k−1)
)
−

d∑
j=1

rj ln(θ)
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−
d∑

j=1
ln((rj − 1)!)−

d∑
j=1

ln
(
F (tu

j ; rj , θ)− F (tl
j ; rj , θ)

) . (3.11)

In the fourth equality, we apply the law of total expectation and denote the
posterior probability that observation i belongs to the mixture component corre-
sponding to the shape parameters r as z

(k)
ir . These posterior probabilities can be

computed using Bayes’ rule,

z
(k)
ir = P (Zir = 1 | li,ui, t

l, tu; Θ(k−1))

=
β

(k−1)
r

∏d
j=1

f(lij ,uij ;rj ,θ(k−1))
F (tu

j
;rj ,θ(k−1))−F (tl

j
;rj ,θ(k−1))∑

m∈R β
(k−1)
m

∏d
j=1

f(lij ,uij ;mj ,θ(k−1))
F (tu

j
;mj ,θ(k−1))−F (tl

j
;mj ,θ(k−1))

=
α

(k−1)
r

∏d
j=1 f(lij , uij ; rj , θ(k−1))∑

m∈R α
(k−1)
m

∏d
j=1 f(lij , uij ; mj , θ(k−1))

. (3.12)

using (3.7), for i = 1, . . . , n and r ∈ R.
Since the terms in (3.11) for Q(Θ; Θ(k−1)) containing E(ln(Xij) | Zir = 1, lij ,

uij , tl
j , tu

j ; θ(k−1)) do not depend on the unknown parameter vector Θ, they will
not play a role in the EM algorithm. In the E-step, we need to compute the
expected value of Xij conditional on the censoring and truncation points and the
mixing component Zir for the current value Θ(k−1) of the parameter vector. For
i = 1, . . . , n and r ∈ R, we have

E
(

Xij

∣∣∣Zir = 1, lij , uij , tl
j , tu

j ; θ(k−1)
)

=
∫ uij

lij

x
f(x; rj , θ(k−1))

F (uij ; rj , θ(k−1))− F (lij ; rj , θ(k−1))
dx

= rjθ(k−1)

F (uij ; rj , θ(k−1))− F (lij ; rj , θ(k−1))

∫ uij

lij

xrj e−x/θ(k−1)(
θ(k−1)

)rj+1
rj !

dx

=
rjθ(k−1) (F (uij ; rj + 1, θ(k−1))− F (lij ; rj + 1, θ(k−1))

)
F (uij ; rj , θ(k−1))− F (lij ; rj , θ(k−1))

, (3.13)

in case lij < uij and in case lij = uij = xij , the observation is uncensored and
the expression is equal to xij .

M-step In the kth iteration of the M-step, we maximize the expected value
(3.11) of the complete data log-likelihood obtained in the E-step with respect to
the parameter vector Θ over all (β, θ) with βr > 0,

∑
r∈R βr = 1 and θ > 0. The
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maximization with respect to the mixing weights β, requires the maximization of

n∑
i=1

∑
r∈R

z
(k)
ir ln(βr) ,

which can be done analogously as in the univariate case, yielding

β(k)
r = n−1

n∑
i=1

z
(k)
ir for r ∈ R . (3.14)

The average over the posterior probabilities of belonging to the jth component in
the mixture forms the new estimator for the prior probability βj in the truncated
mixture.

We set the first order partial derivative with respect to θ equal to zero in order
to maximize Q(Θ; Θ(k−1)) over θ (see Appendix 3.7), leading to the following M-
step equation:

θ(k) =
n−1∑n

i=1
∑

r∈R z
(k)
ir

∑d
j=1 E

(
Xij

∣∣Zir = 1, lij , uij , tl
j , tu

j ; θ(k−1) )− T (k)∑
r∈R β

(k)
r

∑d
j=1 rj

(3.15)

with

T (k) =
∑
r∈R

β(k)
r

d∑
j=1

(
tl
j

)rj
e−tl

j/θ −
(
tu
j

)rj
e−tu

j /θ

θrj−1(rj − 1)!
(
F (tu

j ; rj , θ)− F (tl
j ; rj , θ)

)
∣∣∣∣∣∣
θ=θ(k)

.

Similar to the univariate case (Verbelen et al., 2015), the new estimator θ(k)

in (3.15) for the common scale parameter θ has the interpretation of the expected
total mean divided by the weighted total shape parameter in the mixture minus
a correction term T (k) due to the truncation. Since T (k) in (3.15) depends on
θ(k) and has a complicated form, it is not possible to find an analytical solu-
tion. Therefore, we use a Newton-type algorithm, with the previous value of θ,
i.e. θ(k−1), as starting value, to solve the equation.

We iterate the E- and M-step until the difference in log-likelihood l(Θ(k);X )−
l(Θ(k−1);X ) between two iterations becomes sufficiently small. By inverting ex-
pression (3.7), we retrieve the maximum likelihood estimator of the original mixing
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weights α
(k)
r for r ∈ R. We first compute

α̃r = β̂r∏d
j=1

[
F (tu

j ; rj , θ̂)− F (tl
j ; rj , θ̂)

] for r ∈ R , (3.16)

where β̂r and θ̂ denote the values in the final EM step, and then normalize the
weights such that they sum to 1.

Using the EM algorithm, the log-likelihood (3.6) increases with each itera-
tion (McLachlan and Krishnan, 2008). The estimator for Θ = (α, θ) obtained
from the EM algorithm has the same limit as the maximum likelihood estimator,
whenever the starting value is adequately chosen. Hence, the maximum likelihood
asymptotic theory in terms of consistency, asymptotic normality and asymptotic
efficiency applies. Within the EM framework, the asymptotic covariance matrix
of the maximum likelihood estimator can be assessed (McLachlan and Krishnan,
2008).

These asymptotic results can only be applied with respect to Θ, given a fixed
shape set R. However, the number of mixture components and the corresponding
values of the shape parameter vectors also have to be estimated for which we
discuss a strategy in the next section. The asymptotic results stated here do
not take this form of model selection into account. In Section 3.5.3 we apply
a bootstrap approach to obtain bootstrap confidence intervals for the value of
Kendall’s τ and Spearman’s ρ.

3.4 Computational details

An efficient multivariate extension of the univariate EM estimation procedure for
Erlang mixtures is not straightforward. Indeed, initialization of the parameter
values and model selection are the main difficulties when estimating a multivari-
ate Erlang mixture to a data sample and are crucial for its practical use in data
analysis. We fill this gap and suggest an effective method to initialize the pa-
rameters of a multivariate Erlang mixture and a strategy to select the best set of
shape parameter vectors using a model selection criterion.

3.4.1 Initialization and first run of the EM algorithm

Property 1 ensures that any positive continuous distribution can be approximated
by an MME. The formulation of the property also shows how this approximation
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can be achieved in case the density to be approximated is available. Therefore, it
serves as a starting point on how to come up with initial values in case of a sample
of observations. A priori, it is however not clear how to translate the property to
a finite sample setting.

Initializing data In a finite sample setting, we do not have the underlying
density function at our disposal and initialize the parameters making use of an
initializing data matrix y of dimension n×d which contains xij if the jth element
of observation i is uncensored, lij in the case of right censoring, uij in the case
of left censoring, and (lij + uij)/2 in case of interval censoring. Hence, we use
popular simple imputation techniques (see e.g. Leung et al., 1997) to deal with
the censoring in the initial step. If the jth element of observation i is missing or
right censored at 0, we set yij equal to missing.

Shapes For any given initial common scale θ(0), instead of using an infinite
set of positive integer shape parameters in each dimension (cfr. Property 1), we
restrict this to a maximum number M of shape parameters in each dimension. We
select these shape parameters in a sensible way by using M quantiles ranging from
the minimum to the maximum in each dimension in order to make a data-driven
decision on the locations of the shape parameters. Denoting the p-percent quantile
of the initializing data in dimension j by Q(p;yj), and taking into account that
the expected value of a univariate Erlang distribution with shape r and scale θ

equals rθ, the set of positive integer shapes in dimension j is chosen as

{r1,j , . . . , rMj ,j} =
{⌈

Q(p;yj)
θ(0)

⌉∣∣∣∣ p = 0,
1

M − 1 ,
2

M − 1 , . . . , 1
}

. (3.17)

where d e denotes upwards rounding, due to the fact that the shapes have to
be positive integers. Consequently, several shapes might coincide which results
in Mj 6 M shape parameters in dimension j. The initial shape set is then con-
structed as the Cartesian product of the d sets of positive integer shape parameters
in each dimension:

R = {r1,1, . . . , rM1,1} × · · · × {r1,d, . . . , rMd,d} . (3.18)

Weights The shape parameters in each dimension, multiplied with the com-
mon scale parameter θ(0), form a grid that covers the sample range. As an em-
pirical version of Property 1, the weights αr, for each shape parameter vector
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r = (rm1,1, . . . , rmd,d) in R, with 1 6 mj 6 Mj for all j = 1, . . . , d, are ini-
tialized by the relative frequency of data points in the d-dimensional rectangle
(rm1−1,1θ(0), rm1,1θ(0)]× · · · × (rmd−1,dθ(0), rmd,dθ(0)] defined by the grid:

α
(0)
r=(rm1,1,...,rmd,d) = n−1

n∑
i=1

d∏
j=1

I
(

rmj−1,jθ(0) < yij 6 rmj ,jθ(0)
)

, (3.19)

with r0,j = 0 for notational convenience and the indicator equal to 1/Mj in case
yij is missing. If this hyperrectangle does not contain any data points, the initial
weight corresponding to the multivariate Erlang in the mixture with that shape
vector will be set equal to zero. Consequently, the weight will remain zero at
each subsequent iteration of the EM algorithm (see formulas (3.12) and (3.14)).
Therefore, these shape vectors can immediately be removed from the set R. At
initialization, the truncation is only taken into account to transform the initial
values for α into the initial values for β via (3.7).

The maximal number of shape vectors is limited to Md at the initial step.
However, due to the fact that Mj 6 M and many shape parameter vectors will
receive an initial weight equal to zero, the actual number of shape vectors at the
initial step will be lower.

Common scale The initial value of the common scale θ is the most influential
for the performance of the initial multivariate Erlang mixture, as is the case in the
univariate setting (Verbelen et al., 2015). A value which is too large will result
in a multivariate mixture which is too flat (‘underfit’); a value which is too small
will lead to a mixture which is too peaky (‘overfit’). A priori, it is not evident
how one can make an insightful decision on θ. Similar to Verbelen et al. (2015),
we therefore introduce an additional tuning parameter: an integer spread factor
s. We propose to initialize the common scale as

θ(0) = minj(maxi(yij))
s

. (3.20)

Due to the use of marginal quantiles in (3.17) , the range of the shape parameters
varies according to the sample ranges in each dimension j = 1, . . . , d with a
maximum shape parameter equal to

rMj ,j =
⌈

maxi(yij)
θ(0)

⌉
=
⌈

maxi(yij)
minj(maxi(yij))s

⌉
. (3.21)
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Hence, the spread factor s determines the maximum shape parameter in the
dimension with the smallest maximum. The fact that the common scale parameter
is equal across all dimensions is compensated by the different choice of the shape
parameters in each dimension based on marginal quantiles. This ensures that the
initialization works well when the ranges in each dimension are different and also
gives reasonable initial approximations in case the data are skewed.

Apply EM algorithm Given an initial choice for the set R of shape parameter
vectors, the initial common scale estimate θ(0) and the initial weights β(0) =
{β(0)

r |r ∈ R} , we find the maximum likelihood estimators for (β, θ) corresponding
to this initial multivariate mixtures of Erlangs, denoted by MMEinit, via the EM
algorithm as explained in section 3.3.3. An overview of the initialization and the
EM algorithm written in pseudo code is given in Algorithm 1.

Algorithm 1 EM algorithm for a multivariate Erlang mixture.
{Initial step}
Choose M and s

Compute:

θ as in (3.20)
shape parameters in each dimension as in (3.17)
shape set R as in (3.18)
mixture weights α as in (3.19)

R← {r ∈ R |αr 6= 0}
Transform weights α to β as in (3.7)
{EM algorithm}
while log-likelihood (3.6) improves do
{E-step}

Compute: posterior probabilities (3.12)
conditional expectations (3.13)

{M-step}

Update: weights β as in (3.14)
scale θ by numerically solving (3.15)

end while
Transform weights β to α using (3.16)
return MMEinit = (R,α,β, θ)

3.4.2 Reduction of the shape vectors

The initial shape set R might not be optimal. After application of the EM
algorithm, we reduce the number of mixture components of the fitted multivariate
Erlang mixture. We use a backward stepwise search based on an information cri-
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Algorithm 2 Reduction of the shape vectors
input MMEinit = (R,α,β, θ)
while BIC (3.22) improves and |R| > 1 do
Rred ← {r ∈ R |βr 6= minr∈R βr }
(β(0), θ(0))red ← ({βr/

∑
r∈Rred

βr |r ∈ Rred }, θ)
Compute MLE for (β, θ)red using the EM algorithm with initial values
(β(0), θ(0))red

if BIC (3.22) improves then
R← Rred

(β, θ)← (β, θ)red

end if
end while
return MMEred = (R,α,β, θ)

terion. Information criteria, such as Akaike’s information criterion (AIC, Akaike,
1974) and Schwartz’s Bayesian information criterion (BIC, Schwarz, 1978), mea-
sure the quality of the model as a trade-off between the goodness-of-fit, via the
log-likelihood, and the model complexity, via the number of parameters in the
model. Models with a smaller value of the information criterion are preferred.
Based on numerical experiments, we prefer the use of BIC over AIC since it has a
stronger penalty term for the number of parameters in the model and hence leads
to more parsimonious models. BIC is computed as

BIC = −2 · l(Θ;X ) + ln(n) · |R| · (d + 1) , (3.22)

where |R| indicates the number of shape parameter vectors in the shape set R.

We reduce the number of mixture components by removing all redundant
shape vectors from the initial mixture based on BIC. In the backward selection
strategy, depicted in pseudo code in Algorithm 2, we delete the shape parameter
vector r from the set R for which the corresponding mixture component has the
smallest weight βr. The remaining weights are standardized to sum to one. Along
with the previous maximum likelihood estimate for the common scale, they serve
as initial estimates to find the maximum likelihood estimators for (β, θ) corre-
sponding to the reduced set Rred of shape parameter vectors by again applying
the EM algorithm. In case this maximum likelihood estimate achieves a lower
BIC value, the reduced set Rred of shape parameters is accepted and we reduce
the number of components further in the same manner. If not, we keep the pre-
vious set. This backward approach provides efficient initial parameter estimates
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for the reduced set of shape parameter vectors and ensures a fast convergence of
the EM algorithm.

3.4.3 Adjustment of the shape vectors

Algorithm 3 Adjustment of the shape combinations
input MMEred = (R,α,β, θ)
while log-likelihood (3.6) improves do

for j ∈ {1, . . . , d} do
for r̃ ∈ R do

repeat
if (r̃1, . . . , r̃j + 1, . . . , r̃d) /∈ R then
Radj ← {r ∈ R |r 6= r̃ } ∪ {(r̃1, . . . , r̃j + 1, . . . , r̃d)}
Compute MLE for (β, θ)adj using the EM algorithm with initial
values (β, θ)
if log-likelihood (3.6) improves then
R← Radj

(β, θ)← (β, θ)adj

end if
end if

until (r̃1, . . . , r̃j + 1, . . . , r̃d) ∈ R or log-likelihood (3.6) no longer im-
proves

end for
for r̃ ∈ R do

repeat
if (r̃1, . . . , r̃j − 1, . . . , r̃d) /∈ R and r̃j − 1 > 1 then
Radj ← {r ∈ R |r 6= r̃ } ∪ {(r̃1, . . . , r̃j − 1, . . . , r̃d)}
Compute MLE for (β, θ)adj using the EM algorithm with initial
values (β, θ)
if log-likelihood (3.6) improves then
R← Radj

(β, θ)← (β, θ)adj

end if
end if

until (r̃1, . . . , r̃j − 1, . . . , r̃d) ∈ R or r̃j − 1 = 0 or log-likelihood (3.6)
no longer improves

end for
end for

end while
return MMEadj = (R,α,β, θ)
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In a next step we improve the shape parameter vectors of the remaining Er-
lang components in the mixture. Each time we adjust one of the components of
a shape parameter vector by shifting its value by one (increase or decrease) and
use the maximum likelihood estimates (β̂, θ̂) corresponding to the current shape
parameter set R as initial values (β(0), θ(0))adj of the mixture of Erlang distribu-
tions with slightly adjusted shape parameter vector set Radj . These initial values
are close to the maximum likelihood estimates which guarantees fast convergence.
In case the maximum likelihood estimate corresponding to the adjusted set Radj

achieves a lower log-likelihood value (3.6), the adjusted set Radj is accepted and
we continue adjusting the value of the shape parameter in the same direction. If
not, we keep the previous set of shape parameter combinations.

The gradual adjustment strategy of the shape parameter combinations is de-
scribed in detail in Algorithm 3. While the log-likelihood improves, we continue
to consecutively increase or decrease the value of a component of a shape param-
eter vector if it leads to a better fit. The algorithm converges when no single
addition or subtraction of the value of any of the components of any of the shape
parameter vectors leads to an improvement in the log-likelihood.

After adjusting the shape parameters, we apply the reduction step in combi-
nation with the adjustment step. Based on BIC we further reduce the number of
shape parameter vectors by deleting the shape vector with the smallest mixture
weight and adjusting the values of the remaining ones. The outline of this adjust-
ment and further reduction of the shape parameter vectors, which results in the
final MME, is given in Algorithm 4.

Algorithm 4 Adjustment and further reduction of the shape vectors
input MMEadj = (R,α,β, θ)
while BIC (3.22) improves and |R| > 1 do
Rred ← {r ∈ R |βr 6= minr∈R βr }
(β(0), θ(0))red ← ({βr/

∑
r∈Rred

βr |r ∈ Rred }, θ)
Compute MLE for (β, θ)red using the EM algorithm with initial values
(β(0), θ(0))red

Apply adjustment algorithm 3
if BIC (3.22) improves then
R← Radj

(β, θ)← (β, θ)adj

end if
end while
return MMEadj = (R,α,β, θ)
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3.5 Examples

We demonstrate the proposed fitting procedure on three data sets, each time
highlighting a different aspect of multivariate mixtures of Erlangs. In a first
simulated two-dimensional example, we explicitly illustrate the different steps of
the estimation procedure. Second, we model the waiting time between eruptions
and the duration of the eruptions of the old faithful geyser data set. Based on
the fitted two-dimensional MME, we immediately obtain the distribution of the
sum of the waiting time and the duration, representing the total cycle time. In
the third example, we use multivariate mixtures of Erlangs to model the udder
infection times of dairy cows observed in a mastitis study, and use the fitted MME
to analytically quantify the positive correlation between the udder infection times
using the explicit expression of the bivariate measures of association Kendall’s
tau and Spearman’s rho in the MME setting.

The resulting MME after applying the different steps in choosing the shape
vectors depends heavily on the starting values. Therefore it is crucial to suffi-
ciently explore the effect of changing the value of the tuning parameters M and
s and compare the results of several different initial starting points for the shape
set. In addition to the value of BIC, graphs aid the assessment of the fitted model.

3.5.1 Simulated data

As a first example, we generate 1000 uncensored and untruncated observations
from a bivariate normal copula with correlation coefficient 0.75 and Erlang dis-
tributed margins with shape parameter equal to 2 and 10, respectively, and scale
parameter equal to 3 and 20, resp. A scatterplot of this simulated data set is
shown in Figure 3.1a. Due to the parameter choice, the ranges in each dimension
are quite different.

We now apply the different steps of the estimation procedure on this data set
and graphically illustrate the interpretations and effects of these steps. First we
consider the initialization strategy for the shape set R, the scale parameter θ and
the mixture weights β, based on the denseness property of MME in Property 1, as
explained in Section 3.4.1. This strategy is controlled by two tuning parameters, a
maximum number M of shape parameters in each dimension and a spread factor
s. In this illustration, we use M = 10 and s = 20. For this choice, the scale θ is
initialized as

θ(0) = minj(maxi(xij))
s

= 27.32452
20 = 1.366226 .
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Figure 3.1: Simulated example: (a) scatterplot, (b) marginal quantile grid, (c)
grid formed by multiplying the shapes (3.17) by the common scale
(3.20) and (d) initial weight α

(0)
r=(9,207) = 0.024.

In order to make a data driven choice for the initial positions of the shape param-
eters, we compute M marginal quantiles in each dimension, which are depicted in
Figure 3.1b and form a grid that covers the data range. These marginal quantiles
are then divided by the initial scale θ(0) and rounded upwards to initialize the
shape parameters in each dimension:

{r1,j , . . . , rMj ,j} =
{⌈

Q(p;xj)
θ(0)

⌉∣∣∣∣ p = 0,
1
9 ,

2
9 , . . . , 1

}
for j = 1, 2 .

The shape set R is constructed as the Cartesian product of the set of shape
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parameters in each dimension:

R = {r1,1, . . . , rM1,1} × {r1,2, . . . , rM2,2}

= {1, 2, 3, 4, 5, 6, 7, 9, 20} × {42, 96, 110, 124, 136, 149, 163, 181, 207, 362} .

Due to the rounding, shape 2 appears twice in the first dimension and only 9
instead of 10 shapes remain in that dimension. Due to the choice of θ(0), s = 20
is the maximal shape parameter in the first dimension, the dimension with the
smallest maximum. The maximal shape in the second dimension is s times the
ratio of the maximum in the second dimension and the lowest maximum, rounded
upwards (see (3.21)). If we multiply this shape set R with the initial scale θ(0),
we obtain a grid that covers the entire sample range which is depicted in Figure
3.1c. This grid differs from the marginal quantile grid due to the rounding and
is used to initialize the weights as the relative frequency of data points in the
2-dimensional rectangle corresponding to each shape vector:

α
(0)
r=(rm1,1,rm2,2) = 0.001

1000∑
i=1

2∏
j=1

I
(

rmj−1,jθ(0) < yij 6 rmj ,jθ(0)
)

.

For example, for the shape vector r = (rm1,1, rm2,2) = (9, 207), we consider the 2-
dimensional rectangle (rm1−1,1θ(0), rm1,1θ(0)]×(rm2−1,2θ(0), rm2,2θ(0)] = (7·θ(0), 9·
θ(0)]× (181 · θ(0), 207 · θ(0)] shown in Figure 3.1d, leading to an initial weight of

α
(0)
r=(9,207) = 0.001

1000∑
i=1

I
(

7 · θ(0) < yi1 6 9 · θ(0)
)

I
(

181 · θ(0) < yi2 6 207 · θ(0)
)

= 0.024 ,

since 24 of the 1000 observations lie in this rectangle. The resulting initial MME
contains 71 shape vectors with a nonzero weight and already forms a reasonable
approximation for the main portion of the data. In Figure 3.2a, we show the
scatterplot of the data with an overlay of the density of the initial MME using a
contour plot and heat map. In the margins, we plot the marginal histograms with
an overlay of the true densities in blue and the fitted densities in red. In the second
dimension, there is too much weight in the tail and too little near the origin. After
applying the EM algorithm a first time with these initial estimates, we obtain the
maximum likelihood estimates of the weights and scale corresponding to this
choice of the shape set (Section 3.4). In Figure 3.2b, we observe that the fit is
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better in the tail, but there is still too little weight in the second dimension near
the origin, due to a bad positioning of the first shape in second dimension.
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Figure 3.2: Scatterplot of the simulated data with an overlay of the fitted density
of the MME using a contour plot and heat map. In the margins, we
plot the marginal histograms with an overlay of the true densities in
blue and the fitted densities in red. In (a), we display the fit after
initialization, in (b) after applying the EM algorithm a first time,
in (c) after applying the reduction step and in (d) after applying the
adjustment and further reduction step.

Hence, the initial set of shape parameter vectors is not ideal and additional
steps are required to improve the shape set. First, we reduce the number of mix-
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ture components from 71 to 17 by subsequently removing the mixture component
having the smallest weight if it is found to be redundant based on BIC (Section
3.4.2). The fit of this reduced mixture in Figure 3.2c nearly coincides with the one
in Figure 3.2b. Second, we adjust the values of the shape parameter vectors and
further reduce the number of mixture components based on BIC (Section 3.4.3)
until we obtain a close-fitting MME with 11 shape parameter vectors (Figure
3.2d). The parameter estimates of this final MME are given in Table 3.1.

Table 3.1: Parameter estimates of the MME with 11 mixture components fitted
to the simulated data.

r αr θ

(1, 56) 0.0124 1.2889
(2, 84) 0.0814
(3, 112) 0.1773
(3, 132) 0.1005
(4, 143) 0.1568
(4, 164) 0.0257
(5, 164) 0.1320
(6, 189) 0.1586
(8, 223) 0.1097

(11, 273) 0.0446
(11, 382) 0.0010

3.5.2 Old faithful geyser data

We consider the waiting time between eruptions and the duration of the eruption
for the Old faithful geyser in Yellowstone National Park, Wyoming, USA. We
use the version of Azzalini and Bowman (1990) which contains 299 observations.
This data set is popular in the field of nonparametric density estimation (see e.g.
Silverman, 1986; Härdle, 1991). We stress that we use MME as a multivariate
density estimation technique, and not as a mixture modeling technique to identify
subgroups in this data.

We fit a two-dimensional MME to the data using the fitting strategy explained
in Section 3.4. We perform a grid search to identify good values for the tuning
parameters M and s. We let s vary between 10 and 90 by 10 and between 100
and 1000 by 100 and set M equal to 5, 10 and 20. To illustrate the importance
and effect of the tuning parameters, we report part of the results of the search
grid, up to s = 200, in Figure 3.3 and Table 3.2. Values of s beyond 200 resulted
in MME which were overfitting the data.
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Table 3.2: BIC values and number of mixture components when fitting an MME
to the Old Faithful geyser data, starting from different values of the
tuning parameters. The minimum BIC value is underlined and ob-
tained for M = 10 and s = 90.

M = 5 M = 10 M = 20
s BIC |R| BIC |R| BIC |R|
10 3211.134 2 3211.134 2 3211.134 2
20 3133.564 5 3148.824 5 3148.824 5
30 3069.731 6 3069.731 6 3083.757 6
40 3056.588 8 3024.869 9 3051.427 6
50 3026.997 8 3011.941 12 3023.951 15
60 3011.567 8 3008.350 14 3040.962 16
70 3008.319 8 3008.350 14 3018.867 15
80 3015.743 8 3007.694 15 3039.017 17
90 3028.742 8 2998.870 15 3047.314 18
100 3029.431 8 3005.343 15 3023.761 17
200 3037.532 8 3026.490 23 3224.578 36
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Figure 3.3: BIC values when fitting an
MME to the Old Faithful
geyser data, starting from
different values of the tun-
ing parameters. The mini-
mum BIC value is obtained
for M = 10 and s = 90.

Table 3.3: Parameter estimates of the
best-fitting MME with 15
mixture components fitted to
the Old Faithful geyser data.

r αr θ

(791, 79) 0.0061 0.0556
(893, 81) 0.1103
(964, 79) 0.0798

(1047, 77) 0.0795
(1121, 83) 0.0378
(1193, 79) 0.0402
(1314, 74) 0.0893
(1319, 37) 0.0387
(1418, 73) 0.1284
(1425, 36) 0.1380
(1543, 73) 0.0633
(1551, 36) 0.1249
(1660, 72) 0.0142
(1672, 34) 0.0462
(1940, 36) 0.0033
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Figure 3.4: Graphical evaluation of the best-fitting MME to the Old Faithful
geyser data. In (a), we display the scatterplot of the data with an
overlay of the fitted density using a contour plot and heat map. The
margins show the marginal histograms with an overlay of the fitted
densities in red. In (b), we compare the fitted density of the sum of
the components and the histogram of the observed total cycle times.

The resulting MME depends on the value of the tuning parameters. However,
multiple MME can result in a satisfactory fit of the data. BIC indicates that the
best-fitting MME is obtained for M = 10 and s = 90. The parameter estimates of
this MME are reported in Table 3.3. Both the marginals as well as the dependence
structure are adequately represented by this MME as is confirmed graphically in
Figure 3.4a. Since the maximum of the waiting times is about 20 times as big as
the maximum of the duration times whereas the scale parameter of the MME is
the same across dimensions, the fitted marginal density is more capricious in the
dimension of the waiting times and smoother in the dimension of the duration
times.

We are interested in the distribution of the duration of the total cycle, i.e. the
sum of the waiting time until the eruption and the duration of the eruption. Based
on the fitted two-dimensional MME and due to the analytical properties of MME,
we immediately obtain the distribution of this sum, which is a univariate mixture
of Erlang distributions with the same scale, the sum of the shape parameters
across the dimensions as shape parameters and the same corresponding weights
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in (Lee and Lin, 2012, Theorem 5.1). Hence, the parameters of this univariate
mixture of Erlang distributions are readily available from Table 3.3. Comparing
the histogram of the observed total times to the fitted density in Figure 3.4b
reveals a close approximation.

3.5.3 Mastitis study

Mastitis is economically one of the most important diseases in the dairy sector
since it leads to reduced milk yield and milk quality. In this example, we consider
infectious disease data from a mastitis study by Laevens et al. (1997). This data
set has also been used in Goethals et al. (2009) and Ampe et al. (2012).

We focus on the infection times of individual cow udder quarters with a bac-
terium. As each udder quarter is separated from the three other quarters, one
quarter might be infected while the other quarters remain infection-free. However,
the dependence must be modeled since the data are hierarchical, with individual
observations at the udder quarter level being correlated within the cow. Addition-
ally, the infection times are not known exactly due to a period follow-up, which is
often the case in observational studies since a daily checkup would not be feasible.
Roughly each month, the udder quarters are sampled and the infection status is
assessed, from the time of parturition, at which the cow was included in the cohort
and assumed to be infection-free, until the end of the lactation period. This gen-
erates interval-censored data since for udder quarters that experience an event it
is only known that the udder quarter got infected between the last visit at which
it was infection-free and the first visit at which it was infected. Observations
can also be right censored if no infection occurred before the end of the lactation
period, which is roughly 300-350 days but different for every cow, before the end
of the study or if the cow is lost to follow-up during the study, for example due
to culling.

The data we consider contains information on 100 dairy cows on the time to
infection of the four udder quarters by different types of bacteria. This data set
is used in Goethals et al. (2009), who model the data using an extended shared
gamma frailty model that is able to handle the interval censoring and clustering
simultaneously. We treat the infection times at the udder quarter level of the
cow as four-dimensional interval and right censored data of which we estimate
the underlying density using MME. The udder quarters are denoted as RL (rear
left), FL (front left), RR (rear right) and FR (front right).

In search for the best values of the tuning parameters in the MME estimation
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procedure, we first fixed M = 20 and let s vary between 10 and 100 by 10 and
between 100 and 1000 by 100. As the best final fit was obtained for s = 10, we
varied M between 10 and 100 by 10 for s fixed at 10. The resulting fits did,
however, not depend on M when s is as low as 10 since the starting values were
identical. Varying s from 5 tot 15 for M = 20 confirmed that the best fit is
obtained for M = 20 and s = 10. For this setting, the initial number of shape
vectors was 73, which got reduced to 6 after the reduction step and to 4 after the
adjustment step. The final parameter estimates of the best-fitting mixture are
given in Table 3.4.

Table 3.4: Parameter estimates of the best-fitting MME with four mixture com-
ponents fitted to the mastitis data (infections by all bacteria).

r αr θ

(2, 2, 2, 2) 0.4897 37.8621
(3, 5, 8, 4) 0.1331
(7, 5, 2, 7) 0.2262

(10, 14, 11, 8) 0.1510

In order to graphically examine the goodness-of-fit of the fitted MME, we
construct in Figure 3.5 a generalization of the scatterplot matrix. On the diag-
onal we compare the Turnbull nonparametric estimate of the survival curve for
right and interval censored data (Turnbull, 1976), along with the log-transformed
equal precision simultaneous confidence intervals (Nair, 1984), to the univariate
marginal survival function of the fitted MME. On the off-diagonal, we construct
bivariate scatterplots of interval and right censored data points, represented using
the effective visualization of Li et al. (2015). Interval censored observation are
depicted as segments or rectangles ranging from the lower to the upper censoring
points and right censored observations are depicted as arrows starting from the
lower censoring point and pointing to the censoring direction. On top, we display
the contour plot and heat map representing the density of the bivarite marginal
of the fitted MME. Based on this graph, we observe that in four dimensions, with
100 interval and right censored observations, we are able to fit an MME with four
shape parameter vectors which appropriately captures the marginals as well as
the dependence structure.

As a measure of the infectivity of the agent causing the disease, we are in-
terested in the correlation between udder infection times. Due to the fact that
the bivariate marginals again belong to the MME class and the analytical qual-
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Figure 3.5: Scatterplot matrix comparing the fitted four-dimensional MME to
the observed interval and right censored observations of the mastitis
data (infections by all bacteria). For more explanation, see Section
3.5.3

ities of MME, we have closed-form expressions for Kendall’s τ and Spearman’s
ρ (Lee and Lin, 2012, Theorem 3.2 and 3.3). Note that these do not depend on
the common scale parameter. For the interval and right censored sample, we can
hence estimate these measures based on the fitted MME to analytically quantify
the positive correlation between each pair of udder quarter infection times (Table
3.5).

Inference is not straightforward due to the model selection as pointed out in
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Section 3.3.3. In order to quantify the uncertainty and construct an approximate
confidence interval for the bivariate measures of association, we resort to a boot-
strapping procedure (Efron and Tibshirani, 1994). By sampling with replacement
from the original four-dimensional data set of size 100, we generate 1000 boot-
strap samples of the same size 100. For each of these bootstrap samples, we fit an
MME where we set the tuning parameter M equal to 20 and let s vary between
5 and 25. We choose this fixed grid for each bootstrap sample since the optimal
tuning parameters for the full sample were M = 20 and s = 10 and the starting
values are not that sensitive with respect to M for low values of s. We thereby
obtain 1000 estimates for each measure of association. The 5% and 95% quantiles
of these estimates are used to construct a 90% bootstrap percentile confidence
interval for each Kendall’s τ and Spearman’s ρ in Table 3.5.

Table 3.5: Estimates and 90% bootstrap confidence intervals for the bivariate
measures of association Kendall’s τ and Spearman’s ρ based on the
fitted MME for the mastitis data (infections by all bacteria).

RL FL RR

FL τ 0.4187
(0.3329, 0.5515)

ρ 0.6019
(0.4727, 0.7439)

RR τ 0.2018 0.3307
(0.1693, 0.3989) (0.2585, 0.4784)

ρ 0.3004 0.4852
(0.2423, 0.5616) (0.3806, 0.6664)

FR τ 0.4326 0.4105 0.2119
(0.3598, 0.5538) (0.2701, 0.4883) (0.1543, 0.3968)

ρ 0.6354 0.5994 0.3122
(0.5066, 0.7608) (0.3875, 0.6794) (0.2206, 0.5577)

3.6 Discussion

MME form a highly flexible class of distributions which are at the same time
mathematically tractable. From Property 1, we know that any positive contin-
uous multivariate distribution can be approximated up to any accuracy by an
infinite multivariate mixture of Erlang distributions. Our contribution presents
a computationally efficient initialization and adjustment strategy for the shape
parameter vectors, translating this theoretical aspect in a strong point in practice
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as well. In the examples, we demonstrate how the fitting procedure is able to esti-
mate an MME that adequately represents both the marginals and the dependence
structure. By extending the EM algorithm, we are now also able to deal with left,
interval or right censored and truncated data. MME therefore form a valuable
multivariate density estimation technique to analyze realistic data, even in incom-
plete data settings, and to model the dependence directly in a low dimensional
setting.

Their tractability allows to derive explicit expression of properties of interest.
Willmot and Woo (2015) have paved the way for applying MME in insurance
loss modeling, survival analysis and ruin theory. When modeling insurance losses
or dependent risks from different portfolios or lines of business using MME, the
aggregate and excess losses have again a univariate and multivariate mixture of
Erlangs distribution. Stop-loss moments, several types of premiums, risk capital
allocation based on the Tail-Value-at-Risk (TVaR) or covariance rule for regu-
latory risk capital requirements (see e.g. Dhaene et al., 2012) have analytical
expressions. When modeling bivariate lifetimes and pricing joint-life and last-
survivor insurance (see e.g. Frees et al., 1996) using MME, the distribution of the
minimum and maximum is again a univariate mixture of Erlangs. Such kind of
data are always left truncated and right censored. The extension of the fitting
procedure for MME presented in this chapter, allows to take the right censoring
into account. Left truncation can only be properly handled when the left trun-
cation points are fixed for each observation. This is however not the case when
pricing joint-life and last-survivor insurance since the ages at which policyholders
enter a contract vary.

The reduction and adjustment steps of the shape parameters in the fitting
procedure iteratively make use of the EM algorithm and can be time consuming.
Further adjustment is needed to estimate parameters in high dimensional settings.
As also acknowledged in the univariate case (Verbelen et al., 2015), the modeling
of heavy-tailed distributions using MME is challenging since MME are not able
to extrapolate the heaviness in the tail.

3.7 Appendix: Partial derivative of Q

In order to maximize Q(Θ; Θ(k−1)) with respect to θ, we set the first order partial
derivative at θ(k) equal to zero. In the second equation, expression (3.2) of the
cumulative distribution of an Erlang, while (3.14) is used to obtain the third
equation.



3.7. Appendix: Partial derivative of Q 73

∂Q(Θ; Θ(k−1))
∂θ

∣∣∣∣∣
θ=θ(k)

=
n∑

i=1

∑
r∈R

z
(k)
ir

(∑d
j=1 E

(
Xij

∣∣Zir = 1, lij , uij , tl
j , tu

j ; θ(k−1) )
θ2

−
∑d

j=1 rj

θ
−

d∑
j=1

∂
∂θ

[
F (tu

j ; rj , θ)− F (tl
j ; rj , θ)

]
F (tu

j ; rj , θ)− F (tl
j ; rj , θ)

∣∣∣∣∣∣
θ=θ(k)

= 1
θ2

n∑
i=1

∑
r∈R

z
(k)
ir

d∑
j=1

E
(

Xij

∣∣∣Zir = 1, lij , uij , tl
j , tu

j ; θ(k−1)
)

−n

θ

∑
r∈R

(∑n
i=1 z

(k)
ir

n

)
d∑

j=1
rj

−
n∑

i=1

∑
r∈R

z
(k)
ir

d∑
j=1

∂
∂θ

(
γ(rj , tu

j /θ)− γ(rj , tl
j/θ)

)
(rj − 1)!

(
F (tu

j ; rj , θ)− F (tl
j ; rj , θ)

)
∣∣∣∣∣∣
θ=θ(k)

= 1
θ2

n∑
i=1

∑
r∈R

z
(k)
ir

d∑
j=1

E
(

Xij

∣∣∣Zir = 1, lij , uij , tl
j , tu

j ; θ(k−1)
)

−n

θ

∑
r∈R

β(k)
r

d∑
j=1

rj

− n

θ2

∑
r∈R

β(k)
r

d∑
j=1

(
tl
j

)rj
e−tl

j/θ −
(
tu
j

)rj
e−tu

j /θ

θrj−1(rj − 1)!
(
F (tu

j ; rj , θ)− F (tl
j ; rj , θ)

)
∣∣∣∣∣∣
θ=θ(k)

= 0 ,

where we used expression (3.2) of the cumulative distribution of an Erlang in the
second equality and (3.14) in the third.





Chapter 4

Unraveling the predictive power

of telematics data in car insurance

pricing

Abstract

A data set from a Belgian telematics product aimed at young drivers is used
to identify how car insurance premiums can be designed based on the telem-
atics data collected by a black box installed in the vehicle. In traditional
pricing models for car insurance, the premium depends on self-reported rat-
ing variables (e.g. age, postal code) which capture characteristics of the
policy(holder) and the insured vehicle and are often only indirectly related
to the accident risk. Using telematics technology enables tailor-made car
insurance pricing based on the driving behavior of the policyholder. We de-
velop a statistical modeling approach using generalized additive models and
compositional predictors to quantify and interpret the effect of telematics
variables on the expected claim frequency. We find that such variables in-
crease the predictive power and render the use of gender as a discriminating
rating variable redundant.

This chapter is based on Verbelen, R., Antonio, K., and Claeskens, G. (2016).
Unraveling the predictive power of telematics data in car insurance pricing. FEB
Research Report KBI 1624.
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4.1 Introduction

For a unique Belgian portfolio of young drivers in the period between 2010 and
2014, telematics data on how many kilometers are driven, during which time slots
and on which type of roads were collected using black box devices installed in
the insureds’ cars. The aim in this chapter is to incorporate this information in
statistical rating models, where we focus on predicting the number of claims, in
order to adequately set premium levels based on individual policyholder’s driving
habits.

Determining a fair and correct price for an insurance product (also called
ratemaking, pricing or tarification) is crucial for both insureds and insurance
companies. Pricing through risk classification or segmentation is the mechanism
insurance companies use to compete and to reduce the price of insurance contracts.
Insurance Europe, the European insurance and reinsurance federation, reports1 a
total motor premium income amounting to e124 billion in 2014. Car insurance
is the most widely purchased non-life insurance product in Europe, accounting
for 27.3% of non-life premiums. To avoid lapses in this competitive market many
rating factors are used to classify risks and differentiate prices. Besides the fierce
competition, high acquisition and retention costs, low customer engagement, no
brand loyalty and a high cost of retention have put a huge pressure on the car
insurance industry. Car insurance is traditionally priced based on self-reported
information from the insured, most importantly: age, license age, postal code,
engine power, use of the vehicle, and claims history. However, these observable risk
factors are only proxy variables, not reflecting present patterns of driving habits
and the driving style, and consequently tariff cells are still quite heterogeneous.

Telematics technology – the integrated use of telecommunication and infor-
matics – may fundamentally change the car insurance industry. The use of this
technology in insured vehicles enables to transmit and receive information that
allows an insurance company to better quantify the accident risk of drivers and
adjust the premiums accordingly through usage-based insurance (UBI). By moni-
toring their customers’ motoring habits, underwriters can increasingly distinguish
between drivers who are safe on the road from those who merely seem safe on pa-
per.2 Young drivers and drivers in other high risk groups, who are typically facing
hefty insurance premiums, can be judged based on how they really drive. Regu-
lation also plays a role as the use of indirect indicators of risk is being questioned

1 http://www.insuranceeurope.eu/european-motor-insurance-markets-addendum
2 How’s my driving? (2013, February 23) The Economist. http: // econ. st/ Yd5x3C

http://www.insuranceeurope.eu/european-motor-insurance-markets-addendum
http://econ.st/Yd5x3C
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by the European Court of Justice. In 2012, a European Union (EU) ruling came
into force, banning price differentiation based on gender.3 Through telematics,
women may be able to confirm that they really are safer drivers.

The use of telematics risk factors potentially enables an improved method for
determining the cost of insurance. Due to a more refined customer segmentation
and greater monitoring of the driving behavior, UBI addresses the problems of
adverse selection and moral hazard that arise from the information asymmetry
between the insurer and the policyholders (Filipova-Neumann and Welzel, 2010).
Closer aligning insurance policies to the actual risks increases actuarial fairness
and reduces cross-subsidization compared to grouping the drivers into too general
actuarial classes (Desyllas and Sako, 2013). In addition, some positive exter-
nalities are to be expected (Parry, 2005; Litman, 2015; Tselentis et al., 2016).
Telematics insurance gives a high incentive to change the current driving pattern
and stimulates more responsible driving. Users’ feedback on driving behavior and
gamification of UBI can further enhance the customer experience by making it
more interactive, gratifying and even exciting (Toledo et al., 2008). Less and
safer driving is encouraged, leading to improved road safety and reduced vehicle
travel with less congestion, pollution, fuel consumption, road cost, and crashes
(Greenberg, 2009).

Usage-based insurance includes Pay-as-you-drive (PAYD) and pay-how-you-
drive (PHYD) schemes (Tselentis et al., 2016). PAYD focuses on the driving
habits, e.g. the driven distance, the time of day, how long the insured has been
driving, and the location. PHYD goes even further by also considering the driving
style, e.g. the speed, harsh or smooth braking, aggressive acceleration or decelera-
tion, cornering and parking skills. Furthermore, the telematics data collected can
be enriched using other sources of data, for example road maps with corresponding
speed limitations to infer road types and speeding violations.

Telematics insurance started as a niche market when the technology first sur-
faced more than 10 years ago. The high implementation costs and its complexity
limited its success. Advances in technology and telecommunication have how-
ever reduced the cost substantially. Early adopters of UBI were seen primarily in
the United States (US), Italy and the United Kingdom (UK) due to the higher
premiums, particularly for young drivers, the highly competitive markets, and a
higher incidence of fraudulent claims and vehicle theft. Monti’s decree of 20124,

3 http://europa.eu/rapid/press-release_IP-11-1581_en.htm
4 Law Decree of 24 January 2012, n.1 “Urgent provisions for competition, infrastructure de-

velopment and competitiveness” (the so-called “Cresci Italia”), converted by law 24 March
2012, n.27.

http://europa.eu/rapid/press-release_IP-11-1581_en.htm
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encouraging Italian insurers to provide a telematics option, has made Italy the
most active country in Europe in telematics insurance, with the overall pene-
tration level around 15% in June 2016.5 Ptolemus further reports that at that
moment insurance companies have launched 292 telematics programs or active
trials worldwide (see Husnjak et al., 2015, for some examples of UBI solutions
implemented worldwide). The number of UBI policies is over 7.9 million in the
US, over 5 million in Italy and over 860 000 in the UK.6 Moreover, on 28 April
2015 the European Parliament voted in favor of eCall regulation which forces all
new cars in the EU from April 2018 onwards to be equipped with a telematics de-
vice that will automatically dial 112 in the event of an accident, providing precise
location and impact data.7 However, legislation also gives rise to legal concerns
and challenges in the telematics insurance market. In particular, insurers have
to comply with the aspects of data protection and privacy in the evolving legal
environment.

This potentially high dimensional telematics data, collected on the fly, forces
pricing actuaries to change their current practice, both from a business as well
as a statistical point of view. New statistical models have to be developed to ad-
equately set premiums based on an individual policyholder’s driving habits and
style and the current literature on insurance rating does not adequately address
this question. In this chapter, we take a first step in this direction. We use a Bel-
gian telematics insurance data set with in total over 297 million kilometers driven.
Based on how many kilometers the insured drives, on which kind of roads and
during which moments in the day, we quantify the impact of individual driving
habits on expected claim frequencies. Combined with a similar predictive model
for claim severities, which is outside of the scope in this chapter, this allows for
tailor-made car insurance pricing. We first discuss how a car insurance policy is
traditionally priced and relate this to the literature investigating the impact of
vehicle usage on the accident risk in Section 4.2. The data set is described in Sec-
tion 4.3, along with the necessary preliminary data processing steps to combine
the telematics information with the policy and claims information. By construct-
ing predictive models for the claim frequency, we compare the performance of
different sets of predictor variables (e.g. traditional vs. purely telematics) and
unravel the relevance and impact of adding telematics insights. In particular, we

5 http://www.ptolemus.com/ubi-study/telematics-insurance-infographic/
6 Ptolemus Consulting Group (2016). Usage-based insurance (global study), free abstract.
7 Regulation (EU) 2015/758 of the European Parliament and of the Council of 29 April 2015

concerning type-approval requirements for the deployment of the eCall in-vehicle system based
on the 112 service and amending Directive 2007/46/EC.

http://www.ptolemus.com/ubi-study/telematics-insurance-infographic/
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contrast the use of time and distance as exposure-to-risk measures. The statis-
tical methodology, including in particular the challenges when incorporating the
divisions of the driven distance by road type and time slots as predictors in the
model, is presented in Section 4.4. In Section 4.5, we present the results and,
finally, in Section 4.6, we conclude.

4.2 Statistical background and related modeling
literature

Insurance pricing is the calculation of a fair premium, given the policy(holder)
characteristics, as well as information on claims reported in the past (if available).
The pure premium represents the expected cost of the claims a policyholder will
declare during the insured period. Pricing relies on regression techniques and
requires a data set with policy(holder) information and corresponding claim fre-
quencies and severities, where severity is the ultimate total impact of a claim.

A priori pricing refers to the statistical problem of pricing without incorpo-
rating the claim history of the policyholder, thus neither frequency nor severity
of past claims is taken into account. The construction of an a priori tariff tra-
ditionally relies on a frequency-severity modeling framework in which the claim
frequency and severity components are typically modeled separately using re-
gression techniques (Frees, 2014). A policyholder’s pure premium is obtained
by multiplying the expected claim frequency and expected claim severity, given
the observable risk factors. The current state-of-the-art (see Denuit et al., 2007;
de Jong and Heller, 2008, for an overview) uses generalized linear models (GLMs;
McCullagh and Nelder, 1989), with typically a Poisson GLM for the claim counts
and a gamma GLM for the claim severities. Modeling the claim severities is dif-
ficult, since only those observations corresponding to policyholders who filed a
claim can be used to estimate the claim severity model and due to the complexity
of the phenomenon (Denuit and Charpentier, 2005). On the one hand, there is a
long delay to assess the cost of bodily injury and other severe claims and on the
other hand the cost of an accident is, for most part, beyond the control of the
driver. In practice, covariates are much less informative to predict claim amounts
than to predict frequency (Boucher and Charpentier, 2014).

A posteriori pricing refers to experience rating systems which penalize or re-
ward policyholders based on (usually) the number of claims reported in the past.
The idea is that, over time, insurers try to refine their a priori risk classification
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and restore fairness using no-claim discounts and claim penalties. A bonus-malus
system is a typical example (Lemaire, 1995). A bonus-malus scale consists a finite
number of levels, each with its own relativity that is applied to the base premium.
Transitional rules determine how a policy moves up or down based on the number
of claims at fault. As such, on the basis of the insured’s individual claim experi-
ence, the amount of the premium is adjusted each year with penalties in the form
of premium surcharges (corresponding to higher bonus-malus levels) for one or
more accidents in the current year and rewards in the form of premium discounts
(corresponding to lower bonus-malus levels) for claim-free policyholders. From a
statistical point of view a posteriori rating requires the analysis of multilevel data
(Gelman and Hill, 2007).

In car insurance, the duration of the policy period during which coverage is
provided, is referred to as the exposure-to-risk, the basic rating unit underlying the
insurance premium. The expected number of claims is in practice modeled directly
proportional to the exposure. The logic behind this is to make the premiums
proportional to the length of coverage. As such, a premium related to an insured
period of 6 months will be half of the one-year premium, for a given risk profile.
From a theoretical point of view, this can also be motivated by the probabilistic
framework of Poisson processes (Denuit et al., 2007). It is however suggested
(see e.g. Butler, 1993) that every kilometer traveled by a vehicle transfers risk to
its insurer and hence the number of driven kilometers (car-kilometer) should be
adopted as the exposure unit instead of the policy duration (car-year). Statistical
studies show how claim frequencies significantly increase with kilometers (Bordoff
and Noel, 2008; Ferreira and Minikel, 2010; Litman, 2011; Boucher et al., 2013;
Lemaire et al., 2016). Most of these studies show a relationship between claim
frequencies and the number of driven kilometers which is less than proportional.
They suggest that possibly high-kilometer drivers are more experienced, have
newer and safer vehicles, or drive more on low-risk motorways rather than high-
risk urban areas.

Data collected using telematics technology offers more insight in the driving
habits. Instead of relying only on the self-reported annual number of driven
kilometers, pay-as-you-drive insurance can also account for the type of road and
the time of the day when an insured has been driving. A next step is to also
take data on driving style into account, leading to a pay-how-you-drive insurance
(Weiss and Smollik, 2012). Statistical analysis of these types of data has been the
subject of limited academic scrutiny.

Ayuso et al. (2014, 2016a) study the traveled time and distance to the first
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accident using Weibull regression models involving both policy and telematics
predictors. Paefgen et al. (2014) investigate the relationship between the accident
risk and driving habits using logistic regression models. Their case-control study
design does not allow for inference on the probability of accident involvement.
The difference in time exposure between the vehicles with accident involvement
(6 months prior to the accident) and the control group (24 months) is however
only used to obtain a per-month distance exposure, but is further neglected in the
study. Traditional risk factors were not accounted for, since that information was
not available, and the compositional nature of the constructed telematics predic-
tor variables was ignored. In contrast, combining the new telematics variables
with traditional policy(holder) information through a careful model and variable
selection process as well as recognizing the compositional structure in the analysis
are main focus points in our research, see Section 4.3.2.

4.3 Telematics insurance data

We consider data from a Belgian portfolio of drivers with motor third party li-
ability (MTPL) insurance. MTPL insurance is the legally compulsory minimum
insurance covering damage to third parties’ health and property caused by an
accident for which the driver of the vehicle is responsible. The special type of
MTPL product we are considering, is specifically aiming for young drivers who
are traditionally facing high insurance premiums. Insureds were offered a sub-
stantial discount on their premium if they agree to install a telematics black box
device in their car. The telematics box collects statistics on the driving habits:
how often one drives, how many kilometers, where and when. Information on
the driving style (such as speeding, braking, accelerating, cornering or parking) is
not registered. The telematics data have so far no effect on the (future) premium
levels of the insureds and do not induce any restrictions on how much or where
they can drive.

4.3.1 Data processing

The unstructured telematics data, collected by the telematics box installed in the
vehicle, are first transmitted to the data provider who structures and aggregates
these data each day and then reports them to the insurance company as a CSV
file (Figure 4.1a). Only the structured, aggregated telematics information is avail-
able to us. Each daily file contains information on the daily driven distance (in
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Figure 4.1: (a) A schematic overview of the flow of information. (b) The num-

ber of registered kilometers on each day on an aggregate, portfolio
level for the telematics data observed between January 1, 2010 and
December 31, 2014. The outliers by the turn of the year 2014, cor-
responding to a technical malfunction, are indicated as triangles.

meters) for each policyholder. This number of meters is split into 4 road types
(urban areas, other, motorways and abroad) and 5 time slots (6h-9h30, 9h30-16h,
16h-19h, 19h-22h and 22h-6h). The nature of the data does not allow for a classi-
fication of a driven meter by road type and time slot simultaneously. The number
of trips, measured as key-on/key-off events, is also reported. This is a typical
setup (see Paefgen et al., 2014). In this study, we analyze the telematics data
collected between January 1, 2010 and December 31, 2014.

The telematics data are linked with the policy(holder) and claims information
of the insurance company corresponding to the portfolio under consideration (see
Table 4.1 for a complete list). Policy data, such as age, gender and characteristics
of the car, are directly reported by the insured to the insurer at underwriting (see
Figure 4.1a). They are updated over time which enables us to link the claims
occurring at a specific moment in time to the correct policy information. Each
observation of a policyholder in the policy data set refers to a policy period over
which the MTPL insurance coverage holds and contains the most recent policy
information. For most insureds, this coverage period is one year, however, it can
be smaller for several reasons. If for instance the policyholder decides to add
a comprehensive coverage, buys a new vehicle, or changes his residence during
the term of the contract, the policy period will be restricted to that date and
an additional observation line will be added for the subsequent period. A policy
period can also be split when the coverage is suspended for a certain time.

Using the policy number and period we first merge the telematics information
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Table 4.1: Description of the variables contained in the data set arising from the
different sources of information.

Claims information
claims number of reported MTPL claims at fault during the policy

period
Policy information

policy period duration in days of the policy period (minimal 30 days and
at most one year)

age age of the least experienced driver listed on the policy at
the start of the policy period, measured as the number of
years between the birth date and the start of the policy
period

experience experience of the least experienced driver listed on the pol-
icy, measured as the number of years between the date when
the driver’s permit was obtained and the start of the policy
period

gender gender of the least experienced driver listed on the policy
(male or female)

material damage cover indicator whether the insurance policy also covers material
damage (yes or no)

postal code Belgian postal code where the policyholder resides
bonus-malus bonus-malus level of the policy, reflecting the past individ-

ual claims experience, between −4 and 22 with lower values
indicating a better history

age vehicle age of the vehicle, measured as the number of years between
the date when the car was registered and the start of the
policy period

kwatt horsepower of the vehicle, measured in kilowatt
fuel fuel type of the vehicle (petrol or diesel)

Telematics information
distance distance in meters driven during the policy period
yearly distance distance in meters driven during the policy period, rescaled

to a full year by dividing by duration in days of the policy
period and multiplying by 365

trips number of trips (key-on, key-off ) during the policy period
average distance distance in meters driven on average during one trip, ob-

tained by dividing the distance by the number of trips
road type division of the distance into 4 road types (motorways, ur-

ban areas, abroad and other)
time slot division of the distance into 5 time slots (22h-6h, 6h-9h30,

9h30-16h, 16h-19h and 19h-22h)
week/weekend division of distance into week (Monday to Friday) and

weekend (Saturday, Sunday)
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on daily level with the policy data set. Next, we adjust the start and end date
of the policy periods based on the first and last day at which telematics data are
observed for each policy period of each insured. This ensures that the adjusted
policy periods reflect time periods over which both the insurance coverage holds
and telematics data are collected. Based on Figure 4.1b, where we plot the evolu-
tion of the driven distance on each day by all drivers of the portfolio, we suspect
that technical deficiencies of the data provider can cause an underreporting of
the number of meters driven on an aggregate level. The outliers indicated as
triangles by the turn of the year 2014 could be linked to a serious technical failure
preventing telematics information from being reported for a significant part of our
portfolio. We dealt with this by removing this period of roughly one month from
the policy periods of all insureds. In the remainder of the observation period
between January 1, 2010 and December 31, 2014, clear causes of underreport-
ing could not be identified and hence we did not take any other corrective action.
However, this illustrates that data reliability forms a challenge for this new telem-
atics technology. We further removed those observations with a policy duration
of less than 30 days in order to avoid senseless observations of only a couple of
days and retained only the complete observations with no missing policyholder
information.

Next, we aggregate the telematics information by policyholder and period.
This means that we sum the driven distance, their divisions into 4 road types and
5 time slots, and the number of trips made. Finally, we use the claims information
to link the number of MTPL claims at fault that occurred between the start and
end date of the adjusted policy periods for each policy record.

Over the time period of this study, we end up with a data set of 33 259 observa-
tions. Table 4.1 gives an overview of the available variables coming from the three
data sources (claims, policy, and telematics). These observations correspond to
10 406 unique policyholders, who are followed over time, have jointly driven over
297 million kilometers during a combined insured policy period of 17 681 years
and reported 1481 MTPL claims at fault. Hence, on average, there were 0.0838
claims per insured year or 0.0499 claims per 10 000 driven kilometers. For over
95% of the observations no claim occurred during the corresponding policy period,
whereas for 52 observations two claims occurred and for a single observation even
three during the same policy period.
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4.3.2 Risk classification using policy and telematics infor-
mation

The goal of this research is to build a rating model to express the number of claims
as a function of the available covariates. Two sources of information are combined
which are described in detail in Table 4.1. First, there is the self-reported policy
information which contains all rating variables traditionally used in car insurance
pricing. The second source of information is derived from the telematics data.
The main objective is to discover the relevance and impact of adding the new
telematics insights using flexible statistical modeling techniques in combination
with appropriate model and variable selection tools. One of the key questions
is whether the amount of risk transferred from the policyholder to the insurer is
proportional to the duration of the policy period or the driven distance during
that time. Telematics technology allows a shift to be made from time as exposure
to distance as exposure. This would lead to a form of pay-as-you-drive insurance,
where a driver pays for every kilometer driven. Histograms of both potential
exposure variables are contrasted in Figure 4.2a and 4.2b.

In order to investigate the influence and explanatory power of the telematics
variables in predicting the risk of an accident, we compare the performance of four
sets of predictor variables used to model the number of claims, see Figure 4.2c.
The classic set only contains policy information and uses time as exposure-to-risk.
The telematics set only contains telematics information and uses the distance in
meters as exposure-to-risk. The two other models, time hybrid and meter-hybrid,
both contain policy and telematics information. Whereas the first one uses time
as an exposure measure, the second one uses distance. These four predictor
sets contrast on the one hand the use of traditional policy rating variables and
telematics variables and on the other hand the use of policy duration as exposure
and the use of distance as exposure in the assessment of the risk.

The main predictors based on the policy information besides the duration of
the policy period include the age of the driver, the experience as measured using
the driver’s license age, the gender, characteristics of the car and the postal code
where the policyholder lives. In the case of multiple insured drivers (around 18%
of the observations), we select (in consultation with the insurer) the age, gender,
experience and postal code belonging to the driver with the most recent permit
and hence the lowest experience. This is in line with the strategy of the insurer
who offers this type of insurance contract to young drivers. The bonus-malus level
is a special kind of variable that reflects the past individual claims experience.
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Figure 4.2: Histogram of (a) the duration (in days) of the policy period (at most
one year) and (b) the driven distance (in 1000 km) during the pol-
icy period. (c) A graphical representation of the similarities and
differences between the four predictor sets.

It is a function of the number of claims reported in previous years with values
between −4 and 22 where lower levels indicate a better history. The insurer
uses a slightly modified version of the former compulsory Belgian bonus-malus
system, which all companies operating in Belgium have been obliged to use from
1992 to 2002, with minor refinements for the policyholders occupying the lowest
levels in the scale. Despite the deregulation, many insurers in the Belgian market
still apply the former mandatory system (Denuit et al., 2007). Even though, the
bonus-malus scale level is not a covariate of the same type as the other a priori
variables, we keep it in the analysis to have an idea of the information contained
in this variable (as is also done in, for instance, Denuit and Lang, 2004). From a
statistical point of view, it tries to structure dependencies between observations
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Figure 4.3: Histograms and bar plots of the continuous and categorical policy
variables contained in the data set. The map in the lower right
depicts the geographical information by showing the proportion of
insureds per squared kilometer living in each of the different postal
codes in Belgium. The five class intervals have been created using
k-means clustering.

arising from the same policyholder. An overview of the policy predictor variables
and their sample distributions is given in Figure 4.3.

In the telematics information set we use the driven distance during the policy
period as a predictor, but we also create two additional telematics variables, the
yearly and average distance driven, see Table 4.1. Histograms of these variables
are shown in Figure 4.4. The divisions of the driven distance by time slot, road
type and week/weekend are highly correlated with the total driven distance as
they sum up to this amount. To distinguish the absolute information measured by
the driven distance in a certain policy period from the compositional information
of the distance split into different categories, we consider box plots of the relative
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Figure 4.4: Graphical illustration of the telematics variables contained in the
data set. For the yearly and average distance, we construct his-
tograms. For the division of the driven distance by road types, time
slots and week/weekend, we construct box plots of the relative pro-
portions. To highlight the dependencies intrinsic to the fact that the
division in different categories sums to one, we plot profile lines for
100 randomly selected observations in the data set.

proportions in Figure 4.4. These relative proportions sum to one for each obser-
vation in our data set. To stress this interconnectedness present in the different
splits, we show the compositional profiles of a sample of 100 drivers on top of
the marginal box plots. Another important point to stress is that not all compo-
nents of a certain division of the distance are present for each observation. For
instance, if an insured does not drive abroad during the policy period, the relative
proportion of the driven distance abroad will be zero. The use of such composi-
tional information as predictors in statistical modeling is another key issue in this
research.
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4.4 Model building and selection

We model the frequencies of claims by constructing Poisson and negative binomial
(NB) regression models. We denote by Nit the number of claims for policyholder
i in policy period t with i = 1, . . . , I and t = 1, . . . , Ti. The model is denoted
by Nit ∼ Poisson(µit) or Nit ∼ NB(µit, φ), where µit = E(Nit) represents the
expected number of claims reported by policyholder i in policy period t and
φ is the parameter of the NB distribution such that Var(Nit) = µit + µ2

it/φ,
allowing for overdisperion. A log linear relationship between the mean and the
predictor variables is specified by the log link function. This means that we
set µit = exp(ηit) where ηit is a predictor function of the available explanatory
factors. The probability mass functions for the Poisson and the NB models are,
respectively, expressed as

P(Nit = nit) = exp(−µit)µnit
it

nit!
and P(Nit = nit) = Γ(φ + nit)

nit!Γ(φ)
φφµnit

it

(φ + µit)φ+nit
.

For each of the predictor sets in Figure 4.2c we construct the best model using the
allowed information based on AIC, see Section 4.4.3. Additionally, we identify the
best models under the restriction that the risk is proportional to the time or meter
exposure. This is accomplished by incorporating the logarithm of the exposure-
to-risk, either duration of the policy period or total distance driven during the
policy period, as an offset term in the predictor, i.e. a regression variable with
a constant coefficient of 1 for each observation. In the most general case, the
predictor has the form

ηit = β0 + offset + ηcat
it + ηcont

it + ηspatial
it + ηre

it + ηcomp
it , (4.1)

where β0 denotes the intercept, the categorical effects are bundled in ηcat
it , the

term ηcont
it contains the effects of the continuous predictors, ηspatial

it represents the
geographical effect, ηre

it the policyholder-specific random effect and the term ηcomp
it

embodies the effects of the compositional predictors. Under the offset restriction,
the continuous effect of the exposure-to-risk, either the duration of the policy pe-
riod (time based rating) or the driven distance (meter based rating), gets replaced
by the logarithm of the exposure-to-risk as an offset.

Zero inflated variants of these models could also be considered but is not done
here for interpretability reasons since they are not able to capture the effect of a
varying exposure-to-risk in a transparent and intuitive way.
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4.4.1 Generalized additive models

The model framework we work with in this study is the one of generalized addi-
tive models (GAMs), introduced by Hastie and Tibshirani (1986). GAMs allow
to incorporate continuous covariates in a more flexible way as compared to the
traditional GLMs used in actuarial practice (see e.g. Klein et al., 2014). From
an accuracy standpoint, GAMs are competitive with popular black box machine
learning techniques (such as neural networks, random forests or support vector
machines), but they have the important advantage of interpretability. In insur-
ance pricing it is of crucial importance to have interpretable results in order to
understand the premium structure and explain this to clients and regulators.
Using a semiparametric additive structure, GAMs define nonparametric relation-
ships between the response and the continuous predictors in the predictor in the
following way

ηcat
it + ηcont

it = Zitβ +
J∑

j=1
fj(xjit) ,

where Zit represents the row corresponding to policyholder i in policy period
t of the model matrix of parametric terms for the categorical predictors with
parameter vector β and fj represents a smooth function of the jth continuous
predictor variable. To estimate fj , we choose cubic spline basis functions Bjk,
such that fj can be represented as fj(x) =

∑q
k=1 γjkBjk(x). The knots are chosen

using 10 quantiles of the unique xj values. Cardinal basis functions parametrize
the spline in terms of its values at the knots (Lancaster and Salkauskas, 1986). For
identifiability, we impose constraints by centering each smooth component around
zero, thus

∑I
i=1
∑Ti

t=1 fj(xjit) = 0 for j = 1, . . . , J. To avoid overfitting, the cubic
splines are penalized by the integrated squared second derivative (Green and
Silverman, 1994), which yields a measure for the overall curvature of the function.
For each component, this penalty can be written as a quadratic function,∫ (

f ′′
j (x)

)2
dx =

q∑
k=1

q∑
l=1

γjkγjl

∫
B′′

jk(x)B′′
jl(x)dx = γt

jSjγj ,

with (Sj)kl =
∫

B′′
jk(x)B′′

jl(x)dx. Given these penalty functions for each compo-
nent, we define the penalized log-likelihood as

`(ψ)− 1
2

J∑
j=1

λjγ
t
jSjγj , (4.2)
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where `(ψ) denotes the log-likelihood as a function of all model parameters
ψ = (β,γ1, . . . ,γJ)t and λj denotes the smoothness parameter that controls
the tradeoff between goodness of fit and the degree of smoothness of component
fj for j = 1, . . . , J . Different smoothing parameters for each component allow to
penalize the smooth functions differently.

The model parameters ψ are estimated by maximizing (4.2) using penalized
iteratively reweighted least squares (P–IRLS) (Wood, 2006). For the Poisson
model, the smoothing parameters λ1, . . . , λJ are estimated using an unbiased risk
estimator criterion (UBRE), which is a rescaled version of Akaike’s information
criterion (AIC; Akaike, 1974). For the negative binomial model, we estimate
the smoothing parameters and the scale parameter φ using maximum likelihood
(ML).

In addition to categorical and continuous covariates, the data set contains spa-
tial information, namely the postal code where the policyholder resides. Insurance
companies tend to use the geographical information of the insured’s residence as
a proxy for the traffic density and for other unobserved socio-demographic factors
of the neighborhood. We model the spatial heterogeneity of claim frequencies by
adding a spatial term ηspatial

it = fs(latit, longit) in the additive predictor ηit, us-
ing the latitude and longitude coordinates (in degrees) of the center of the postal
code where the policyholder resides. We use second order smoothing splines on
the sphere (Wahba, 1981) to model fs. This allows us to quantify the effect of the
geographic location while taking the regional closeness of the neighboring postal
codes into account.

In our data set, many policyholders i = 1, . . . , I are observed over multiple
policy periods t = 1, . . . , Ti. This longitudinal aspect of the data can be modeled
by including policyholder-specific random effects ηre

it in the predictor. The gen-
eralized additive model considered thus far is extended in this way by exploiting
the link between penalized estimation and random effects (see e.g. Ruppert et al.,
2003). We assess whether such random effects are needed to take the correlations
between observations of the same policyholder into account using the approximate
test for a zero random effect developed by Wood (2013).

4.4.2 Compositional data

The divisions of the total driven distance in the different categories – road types
(4), time slots (5) and week/weekend (2), see Table 4.1 – are highly correlated
with and sum up to the total driven distance. Incorporating these divisions in
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a predictor also containing the total distance leads to a perfect multicollinearity
problem. Furthermore, the corresponding model parameter estimators are not in-
variant to the ordering of the components: the statistical inference changes when
permuting the components making interpretations misleading. The standard re-
gression interpretation of a change in one of the components of the distance when
the other components are held constant is not possible due to the sum constraint
of adding up to the total distance.

The total distance in meters is used as a continuous predictor in the telematics
models and its effect is modeled using a smooth function. Since the divisions of the
distance only contribute additional relative information, we divide all components
of each split by the total driven distance, see Figure 4.4. We obtain what is
known as compositional data (Van den Boogaart and Tolosana-Delgado, 2013;
Pawlowsky-Glahn et al., 2015). Such data are represented by real vectors with
constant sum equal to one and positive components. The space of representations
of compositions is called the simplex of D parts, denoted SD, defined by

SD =
{
x = (x1, . . . , xD)t : xi > 0,

D∑
i=1

xi = 1
}

.

Only relative information is important, and multiplication of the vector of pos-
itive components by a positive constant does not change the ratios between the
components. When data are considered compositional, classical statistics, that
do not take the special geometry of the simplex into account, are not appropri-
ate. Extending the current literature, we propose a new way of quantifying and
interpreting the effect of the compositional explanatory variables on the outcome
and propose an approach to deal with structural zeros.

The Aitchison geometry of the simplex

The vector space structure of the mathematical simplex was discovered by Aitchi-
son (1986) who defined operations on compositional data leading to the Aitchison
geometry of the simplex. Perturbation plays the role of addition on the simplex
and is defined as a closed component-wise product x ⊕ y = C(x1y1, . . . , xDyD)t,
where the closing operation C ensures a total sum of one, i.e. the closure of x is
C(x) = x/

∑D
i=1 xi. The product of a vector by a scalar is called powering and is

defined as α � x = C(xα
1 , . . . , xα

D)t, for α ∈ R. The Aitchison inner product for



4.4. Model building and selection 93

compositions is

〈x,y〉a = 1
2D

D∑
i=1

D∑
j=1

ln xi

xj
ln yi

yj
=

D∑
i=1

ln(xi) ln(yi)−
1
D

(
D∑

i=1
ln(xi)

) D∑
j=1

ln(yj)


and induces the following norm ‖x‖a =

√
〈x,x〉a and distance da(x,y) = ‖x 	

y‖a, where 	 represents the opposite operation of ⊕, i.e. 	y = ⊕((−1)�y). The
simplex along with these operations then forms a (D − 1)-dimensional Euclidean
vector space (SD,⊕,�, 〈·, ·〉a). Given this Euclidean structure, we can measure
distances and angles, and define related geometrical concepts. Elementary sta-
tistical notions involving the metrics of the sample space can be adapted to the
Euclidean structure of the simplex.

Egozcue et al. (2003) constructed orthonormal bases for this Euclidean space
and deduced corresponding isometries between SD and RD−1, called isometric
logratio transformations (ilr). One possible ilr transformation maps a composi-
tional data vector x in a (D − 1)-dimensional real vector z = (z1, z2, . . . , zD−1)t

with components

zi = ilri(x) =
√

D − i

D − i + 1 ln xi

D−i

√∏D
j=i+1 xj

, i = 1, . . . , D − 1 . (4.3)

As the ilr transformation is isometric, all angles and distances are preserved. This
means that, whenever compositions are transformed into coordinates, the metrics
and operations in the Aitchison geometry of the simplex are translated into the
ordinary Euclidean metrics and operations in real space. Let V be the D×(D−1)
matrix with elements

Vij = D − j√
(D − j + 1)(D − j)

for i = j,
−1√

(D − j + 1)(D − j)
for i > j,

and 0 otherwise, for which it holds that V tV = ID−1 and V V t = ID−(1/D)1D1t
D,

where ID is the identity matrix of dimension D and 1D a D-vector of ones
(Egozcue et al., 2011). Then we can rewrite this ilr transform and its inverse
in matrix notation as

z = ilr(x) = V t lnx , and x = ilr−1(z) = C(exp(V z)) , (4.4)

where the logarithmic and exponential function apply componentwise.
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Even though the simplex SD is a subset of the real space RD, Aitchison (1986)
showed that the geometry is clearly different. Ignoring this aspect in a statistical
context can lead to incompatible or incoherent results. The compositional na-
ture of the data must not be ignored. The principle of working on coordinates
in statistics (Mateu-Figueras et al., 2011) is to first express the compositional
data with respect to an orthonormal basis of the underlying vector space with
Euclidean structure. Next, to apply standard statistical techniques to the vectors
of coordinates and, finally, to back-transform and describe the results in terms of
the simplex. Final results do not depend on the chosen basis.

A new interpretation for compositional predictors

In our setting, it is key to incorporate the compositional data arising from the
divisions of the distances into different categories as predictors in the claim count
regression models. Hron et al. (2012) propose to first apply the isometric log
ratio transform (4.3) to map the compositions in the D-part Aitchison simplex to
a (D − 1) Euclidean space. Then, these terms are used as explanatory variables
in a linear regression model. More generally, in any regression context involv-
ing a predictor, one can add a compositional predictor term ηcomp using the ilr
transformed variables, i.e.

ηcomp = β1z1 + . . . + βD−1zD−1 . (4.5)

The fitted model does not depend on the choice of the orthonormal ilr basis since
the coordinates of x with respect to different orthonormal bases are orthogonal
transformations of each other. Using the ilr transformation the model parameters
can be estimated without constraints and the ceteris paribus interpretation of
altering one zi without altering any other becomes possible. Only the first regres-
sion parameter, β1, however has a comprehensible interpretation since z1 explains
relevant information about x1. The remaining coefficients are not straightforward
to interpret and hence Hron et al. (2012) suggest to permute the indices in formula
(4.3) and construct D regression models, each time with a different component
first for which we can interpret the corresponding coefficient. Having to refit the
model multiple times is undesirable, especially in our case where we have more
than one compositional predictor and each model fit is computationally intensive
due to smooth continuous, spatial, and random effects. Hence, we develop a new
strategy to include compositional predictors and interpret their effect.

By using the inverse ilr transform on the model coefficients, i.e. set b = ilr−1(β)
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where β = (β1, . . . , βD−1)t, we can rewrite the compositional predictor as

ηcomp =
D−1∑
i=1

βizi =
D−1∑
i=1

ilri(b)ilri(x) = 〈b,x〉a ,

since the ilr transform preserves the inner product (Van den Boogaart and Tolosana-
Delgado, 2013; Pawlowsky-Glahn et al., 2015). The composition b ∈ SD can be
interpreted as the simplicial gradient of ηcomp with respect to x (Barceló-Vidal
et al., 2011) and is the compositional direction along which the predictor increases
fastest. In particular, if we increase x to x̃ = x⊕ b

‖b‖a
, then the predictor becomes

η̃comp = 〈b, x̃〉a = 〈b,x⊕ b

‖b‖a
〉a = 〈b,x〉a + 1

‖b‖a
〈b, b〉a = ηcomp + ‖b‖a .

When D = 3, the estimated regression model can be visualized as a surface on a
ternary diagram (Van den Boogaart and Tolosana-Delgado, 2013). For D > 3, a
graphical representation is not straightforward.

In order to overcome this shortcoming in interpretation and to develop a graph-
ical representation for compositional explanatory variables, we propose to perturb
the composition in the direction of each component. This offers a new interpre-
tation for the effect of altering the composition on the predictor. For example,
a relative ratio change of α > 1 (increase) or α < 1 (decrease) in the first com-
ponent of x with constant ratios of the remaining components can be achieved
by perturbing the composition x by (α, 1, . . . , 1)t. This leads to a change of the
predictor given by

〈b, (α, 1, . . . , 1)t〉a = ln(b1) ln(α)− 1
D

(
D∑

i=1
ln(bi)

)
ln(α) = clr1(b) ln(α) , (4.6)

which is independent of the original composition x and where

clri(b) = ln
(

bi

gm(b)

)
, gm(b) =

(
D∏

i=1
bi

)1/D

, i = 1, . . . , D

denotes the centered log-ratio (clr) transform of b (Egozcue et al., 2011). The
effect of a relative increase in any of the components can hence best be un-
derstood by considering the clr transform of b, of which the elements sum to
zero and indicate the positive or negative effect of each component on the pre-
dictor. A graphical representation of the effect of a compositional predictor
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can be made by visualizing clr(b) and comparing the elements to zero. Since
β = ilr(b) = V t ln(b) = V tclr(b) and V V t = ID − (1/D)1D1t

D, the clr transform
of b can be written as clr(b) = V β. Confidence bounds can thus be constructed
using the corresponding covariance matrix V Σ̂V t where Σ̂ is the estimated co-
variance matrix related to estimating β. To interpret the effect on the level of the
expected outcome in the Poisson and NB models, we can transform these confi-
dence intervals using the exponential function. The exponentiated clr transform
of b has to be compared to one and the effect of a relative ratio change of α in
component i = 1, . . . , D is given by αclri(b).

Dealing with structural zeros in compositional predictors

An additional difficulty when incorporating the compositional information as pre-
dictors in the analysis of the claim counts is the presence of proportions of a spe-
cific component that are exactly zero. In the division of the driven distance by
road type, for instance, many insureds did not drive abroad during the observed
policy period. Since compositional data are always analyzed by considering lo-
gratios of the components (see Section 4.4.2), a workaround is necessary.

In the compositional data literature, different types of zeros are being dis-
tinguished (Pawlowsky-Glahn et al., 2015). Rounded zeros occur when certain
components may be unobserved because their true values are below the detec-
tion limit (cfr. geochemical studies). Count zeros refer to zero values due to the
limited size of the sample in compositional data arising from count data. In our
setting, the zero values are truly zero and are not due to imprecise or insufficient
measurements. Such kind of zeros are called structural zeros. The structural ze-
ros patterns in the data set are listed in Appendix 4.7. The presence of zeros
is most prominent for splitting distance by road types as 40% of the drivers did
not go abroad. Zeros are most often dealt with using replacement strategies (see
e.g. Mart́ın-Fernández et al., 2011, for an overview), which do not make sense for
structural zeros. A general methodology is still to be developed (see e.g. Aitchison
and Kay, 2003; Bacon Shone, 2003). In particular, there does not exist a method
that deals with compositional data with structural zeros as predictor in regression
models. Applying the ilr transform to the compositional data x and using the
transformed z as explanatory variables in the predictor as discussed in Section
4.4.2 is no longer possible.

We propose to treat the structural zero patterns of the compositional predic-
tors as different subgroups within the data and model the effect conditional on
the zero pattern. In the most general situation, 2D − 1 possible zero patterns can
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occur when dealing with compositional data with D components (a structural
zero for every component being excluded). We introduce indicator variables for
each zero pattern and use these in the compositional predictor term ηcomp of the
regression model to specify the effect on the outcome separately for each zero
pattern. More specifically, we define the variables

d(i1,...,ik) =

1 if components i1, . . . , ik of x are nonzero and all other are zero ,

0 otherwise

for all k = 1, . . . , D and 1 6 i1 < . . . < ik 6 D. Conditional on the zero pattern
(i1, . . . , ik) of the compositional data vector x, the contribution to the predictor
is given by the Aitchison inner product 〈b(i1,...,ik),x(i1,...,ik)〉a of the subcompo-
sition x(i1,...,ik) existing of the nonzero components of x and a subcompositional
simplicial gradient b(i1,...,ik), which is different for each zero pattern. In case of
only one nonzero component, the contribution is given by a simple categorical ef-
fect b(i). Note that the subscript (i1, . . . , ik) has a different interpretation for the
dummy variable, simplicial gradient and compositional data vector. The proposed
compositional predictor reads

ηcomp =
D∑

i=1
d(i)b(i) +

D∑
k=2

∑
16i1<...<ik6D

d(i1,...,ik)〈b(i1,...,ik),x(i1,...,ik)〉a .

Zero pattern specific intercepts can be added in the second term if deemed nec-
essary.

4.4.3 Model selection and assessment

Using the same form as Akaike’s information criterion, AIC for a GAM is defined
as

AIC = −2 · ̂̀+ 2 · EDF (4.7)

where ̂̀ is the log-likelihood, evaluated at the estimated model parameters ob-
tained using penalized likelihood maximization, and the effective degrees of free-
dom (EDF) is used instead of the actual number of model parameters. The EDF is
defined as the trace of the hat or smoothing matrix in the corresponding working
linear model at the last P-IRLS iteration (Hastie and Tibshirani, 1990). As such,
(4.7) measures the quality of the model as a trade-off between the goodness-of-fit
and the model complexity.
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For each of the four predictor sets, see Figure 4.2c, variables are selected by
AIC using an exhaustive search over all the possible combinations of variables
given in Table 4.1. We limit ourselves to additive regression models (i.e. no
interactions) such that an exhaustive search is still feasible and the marginal
impact of a single variable can be easily assessed, interpreted and visualized.
Even though the 2011 EU ruling prohibits a distinction between men and women
in car insurance pricing, we allow gender to be selected as a categorical predictor
in the model. For the division of the number of meters in different categories,
10 structural zero patterns occur for the road types, 20 for the time slots, and
3 for week/weekend. However, based on their relative frequencies, we only allow
an additional compositional predictor for the distinction by road type in the case
that a car did not drive abroad, which occurs for 40% of the observations. All
remaining zero patterns are bundled into one residual group and their effect is
modeled using a categorical effect b0, see Table 4.8 of Appendix 4.7. The most
comprehensive compositional predictor term we allow to be selected in the hybrid
and telematics models is

ηcomp
it = droad

(1111)〈b
road
(1111),x(1111)〉a + droad

(1110)〈b
road
(1110),x(1110)〉a

+(1− droad
(1111) − droad

(1110))broad
0 + dtime

(11111)〈b
time
(11111),x(11111)〉a

+(1− dtime
(11111))btime

0 + dweek
(11) 〈b

week
(11) ,x(11)〉a + (1− dweek

(11) )bweek
0 .

In total, 165 888 model specifications are estimated under both the Poisson and
the negative binomial framework.

Predictive performance of these models is assessed using proper scoring rules
for count data, see Table 4.2 (Czado et al., 2009). Scoring rules assess the quality
of probabilistic forecasts through a numerical score s(P, n) based on the predictive
distribution P and the observed count n. Lower scores indicate a better quality
of the forecast. A scoring rule is proper (Gneiting and Raftery, 2007) if s(Q, Q) 6
s(P, Q) for all P and Q with s(P, Q) the expected value of s(P, ·) under Q. In
general, we define by pk = P(N = k) and Pk = P(N 6 k) the probability mass
function and cumulative probability function of the predictive distribution P for
count variable N . The probability mass at the observed count n is denoted as pn.
The mean and standard deviation of P are written as µP and σP , respectively,
and we set ‖p‖ =

∑∞
k=0 p2

k.
We compare the predictive performance of the best models according to AIC

under the four predictor sets, with or without offset in the predictor (4.1), and
using a Poisson or negative binomial distribution. We apply the proper scoring
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Table 4.2: Proper scoring rules for count data.

Score Formula
logarithmic logs(P, n) = − log pn

quadratic qs(P, n) = −2pn + ‖p‖
spherical sphs(P, n) = − pn

‖p‖
ranked probability rps(P, n) =

∑∞
k=0{Pk − 1(n 6 k)}2

Dawid-Sebastiani dss(P, n) =
(

n−µP

σP

)2
+ 2 log σP

squared error ses(P, n) = (n− µP )2

rules to the predictive count distributions of the observed claim counts. We adopt
a K-fold cross-validation approach (Hastie et al., 2009) with K = 10 and apply
the same partition to assess each model specification. Let κit ∈ 1, 2, . . . K be the
part of the data to which the observed claim count nit of policyholder i in policy
period t is allocated by the randomization. Denote by P̂ −κit

it the predictive count
distribution for observation nit estimated without the κitth part of the data. The
K-fold cross-validation score CV(s) is then given by

CV(s) = 1∑I
i=1 Ti

I∑
i=1

Ti∑
t=1

s(P̂ −κit
it , nit) ,

where s is any of the aforementioned proper scoring rules and smaller values of
CV(s) indicate better forecasts.

4.5 Results

4.5.1 Model selection

All computations are performed with R 3.2.5 (R Core Team, 2016) and, in partic-
ular, the R package mgcv version 1.8-11 (Wood, 2011) is used for the parameter
estimation in the GAMs. The variables selected for each of the predictor sets were
identical for the Poisson and NB models, see Table 4.3. The functional forms of
the selected best models are given in Appendix 4.8. The offset versions of the
classic and time-hybrid model replace the term f1(timeit) by ln(timeit), without
any regression coefficient in front. This causes the expected number of reported
MTPL claims, µit = E(Nit) = exp(ηit), to be proportional to the duration of the
policy period. In the offset versions of the meter-hybrid and telematics model,
the flexible term related to distance gets replaced by an offset ln(distanceit),
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Table 4.3: Variables contained in the best Poisson model for each of the predictor
sets. The second column of each predictor set refers to the model with
the offset restriction for either time or meter. The best NB models
were identical to the best Poisson models.

Predictor Classic Time-hybrid Meter-hybrid Telematics

Po
lic

y

Time × offset × offset
Age
Experience × × × × × ×
Sex × ×
Material × × × × × ×
Postal code × × × × × ×
Bonus-malus × × × × × ×
Age vehicle × × × × × ×
Kwatt × × × ×
Fuel × × × ×

Te
le

m
at

ic
s

Distance × offset × offset
Yearly distance × ×
Average distance × × × × × ×
Road type 1111 × × × × × ×
Road type 1110 × × × × ×
Time slot × × × × × ×
Week/weekend × × × × × ×

imposing the risk to be proportional to the distance. Both hybrid models drop
the fuel term in the best offset variants and the telematics model drops road
type 1110.

The models which are allowed to use the policyholder information prefer the
use of experience, measured as the years since obtaining the driver’s license,
instead of age to segment the risk in young drivers. Gender is only selected as
an important covariate in the classic models, not in any of the hybrid models,
indicating that the telematics information renders the use of gender as a rating
variable redundant. The newly introduced telematics predictors are selected in
both the hybrid and the telematics models and hence contribute to the quality of
these models.

The second best models, with only a slightly higher AIC value, show that
adding kwatt to the classic model gives a comparable model fit and the same
holds for adding road type 1110 to the telematics model with offset restriction.
Furthermore, fuel and kwatt can easily be left out of the hybrid models without
deteriorating the fit.



4.5. Results 101

For each of these best model formulations, we added a policyholder-specific
random effect in the predictor (4.1) to account for possible dependence from ob-
serving policyholders over multiple policy periods. However, none of the added
random effects were deemed necessary at the 5% significance level using the ap-
proximate test of Wood (2013).

4.5.2 Model assessment

Table 4.4 reports AIC and all 6 proper scoring rules obtained using 10-fold cross
validation for each predictor set under the Poisson model specification. These per-
formance tools unanimously indicate that the time-hybrid model without offset
scores best. The meter-hybrid model is a close second. Their respective ver-
sions with an offset restriction and the telematics model without offset conclude
the top five according to all criteria except the Dawid–Sebastiani score. This
demonstrates the significant impact of telematics constructed variables on the
predictive power of the model. In addition, the telematics model without offset
outperforms the classic models across all assessment criteria. Hence, using only
telematics predictors is considered to be better than the use of the traditional
rating variables.

Across all predictor sets, the use of an offset for the exposure-to-risk, either
time or meter, is too restrictive for these data. From a statistical point of view,
the time or meter rating unit cannot be considered to be directly proportional to
the risk. However, from a business point of view, it is convenient to consider a
proportional approach due to its simplicity and explainability.

Similar results are obtained under the negative binomial model specification.
The rankings according to AIC are the same as in Table 4.4. The AIC values for
each predictor set under the NB model specification compared to their Poisson
counterpart were slightly higher for the classic and hybrid models and slightly
lower for the telematics models indicating that only the telematics predictor sets
benefit from the additional parameter to capture overdispersion. The model as-
sessment using proper scoring rules led to the same conclusions as before.

Beside an exhaustive search among additive terms, we have explored the use of
interactions among categorical, among continuous, between categorical and con-
tinuous, and between categorical and compositional predictors. Slight marginal
improvements in AIC could only be achieved in the classic model by further re-
fining the effects of experience, age vehicle and material by gender without
changing the rankings in Table 4.4 of the best models.



102
T

elem
atics

insurance

Table 4.4: Model assessment of the best models according to AIC for each of the four predictor sets under the Poisson
model specification. The second row of each predictor set refers to the model with the offset restriction for either
time or meter. For each model we list the effective degrees of freedom (EDF), Akaike information criterion
(AIC) and 6 cross-validated proper scoring rules: logarithmic (logs), quadratic (qs), spherical (sphs), ranked
probability (rps), Dawid-Sebastiani (dss), and squared error scores (ses). For AIC and the proper scoring rules,
the first column represents the value and the second column the rank.

Predictor set Offset EDF AIC logs qs sphs rps dss ses
value, rank value, rank value, rank value, rank value, rank value, rank value, rank

Classic no 32.15 11 896 6 0.1790 6 −0.918 58 6 −0.958 22 6 0.042 24 6 −2.206 5 0.045 35 6
yes 27.27 11 995 8 0.1804 8 −0.918 39 8 −0.958 16 8 0.042 34 8 −2.130 8 0.045 46 8

Time-hybrid no 39.66 11 727 1 0.1764 1 −0.919 10 1 −0.958 37 1 0.041 95 1 −2.275 1 0.045 01 1
yes 36.22 11 811 3 0.1777 3 −0.918 90 3 −0.958 31 3 0.042 06 3 −2.212 4 0.045 14 3

Meter-hybrid no 41.47 11 736 2 0.1766 2 −0.919 08 2 −0.958 36 2 0.041 96 2 −2.266 2 0.045 02 2
yes 36.23 11 856 5 0.1784 5 −0.918 80 4 −0.958 27 4 0.042 12 4 −2.158 6 0.045 22 4

Telematics no 20.58 11 855 4 0.1782 4 −0.918 73 5 −0.958 26 5 0.042 15 5 −2.231 3 0.045 24 5
yes 14.38 11 976 7 0.1800 7 −0.918 47 7 −0.958 18 7 0.042 30 7 −2.134 7 0.045 46 7



4.5. Results 103

4.5.3 Visualization and discussion

The effects of each predictor variable in the best time-hybrid model without off-
set restriction are graphically displayed in Figure 4.5 for the policy model terms
and Figure 4.6 for the telematics model terms. By exponentially transforming
the additive effects, we show the multiplicative effects on the expected number of
claims for each categorical parametric, continuous smooth or geographical term
in the fitted model. For the categorical predictors we quantify the uncertainty
of those estimates by constructing individual 95% confidence intervals based on
the large sample normality of the model parameter estimators. Bayesian 95%
confidence pointwise intervals are used for the smooth components of the GAM
and include the uncertainty about the intercept (Marra and Wood, 2012). For the
compositional data predictors, we visualize the exponentiated clr transform of the
corresponding model parameters with 95% confidence intervals along with a ref-
erence line at one (see Section 4.4.2). Similar graphs for the other three predictor
sets, see Figure 4.2c, are shown in Appendix 4.9 and the relative importance of
these predictors is quantified and visualized in Appendix 4.10. In the remainder
of this section, we discuss the insights and interpretations for both the policy and
telematics variables in each of these models.

Policy variables The rating unit policy period in the classic and time-hybrid
models always has a monotone increasing estimated effect. The longer a policy-
holder is insured, the higher the premium amount, ceteris paribus. Using the fact
that the level of the nonlinear smooth components are not uniquely identifiable
(see Section 4.4.1), we vertically translated the estimated smooth term to pass
the point (365, 0) on the predictor scale (and hence (365, 1) on the response scale)
for ease of interpretation.

The smooth effect of experience embodies the higher risk posed by younger,
less experienced drivers. The increased risk is more outspoken in the first two
years for the hybrid models as compared to the classic model.

In the classic model, the significant effect of gender indicates that women
are 16% less risky drivers than men. However, when telematics predictors are
taken into account in the hybrid models, the categorical variable gender is no
longer selected as predictor. Neither did any interaction term between gender
and a categorical, a continuous or a compositional predictor improve AIC. The
perceived difference between women and men can hence be explained through
differences in driving habits. In particular, female drivers in the portfolio drive
significantly fewer kilometers on a yearly basis compared to men (15 409 vs 18 570
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on average, with a p-value smaller than 0.001 using a two sample t-test). Similar
findings are reported in Ayuso et al. (2016a,b). In light of the EU rules on gender-
neutral pricing in insurance, this shows how moving towards car insurance rating
based on individual driving habits and style can resolve possible discrimination
of basing the premium on proxies such as gender.

The smooth effects of bonus-malus in the classic and hybrid models are non-
linear and somewhat counterintuitive. Given the lack of a lengthy claim history
of the young drivers of this portfolio, the BM level of the insureds are not yet
fully developed and stabilized. The majority of the drivers has a bonus-malus
(BM) level between 4 and 12 for which the effect on the claim frequency is in-
creasing. For the highest BM levels however, the effect is declining, albeit with
a high uncertainty due to a lack of observations in this region. Furthermore, the
effect does not decrease for the lowest BM levels. This can be explained by an
improper use of the BM scale as marketing tool to attract new customers. By
lowering the initial value of the BM scale, the insurer can reduce the premium a
potential new policyholder has to pay.

When it comes to characteristics of the car, insureds driving older vehicles
have an estimated higher risk of accidents. The smooth effect of age vehicle is
estimated as a straight line on the predictor scale in the classic and hybrid models.
The effect of kwatt in the hybrid models also reduced to a straight line on the
predictor scale. When the insured vehicle has more horsepower, the estimated
expected claims number is lower, although this effect is of lesser importance for
the model fit as indicated earlier. The categorical model term fuel shows that
vehicles using petrol have an estimated lower risk for accidents compared to diesel.
This difference is however smaller and no longer statistically significant in the
hybrid models compared to the classic model.

In both the classic and hybrid models, the policies without material damage
cover have a 20% lower estimated expected number of claims. This may be ex-
plained by the reluctance of some insureds without additional material damage
coverage to report small accidents. Due to bonus-malus mechanisms being inde-
pendent of the claim amount, filing a claim leads to premium surcharges which
may be more disadvantageous for policyholders than for them to defray the third
party. This phenomenon is known as the hunger for bonus (Denuit et al., 2007).
Insureds with an additional material damage cover are less inclined to do so since
their own, first party costs are also covered making it more worthwhile to report
a claim at fault. Including telematics variables in the model does not affect this
discrepancy.
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Figure 4.5: Multiplicative response effects of the policy model terms of the time-
hybrid model.

Figure 4.6: Multiplicative response effects of the telematics model terms of the
time-hybrid model.
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The geographical effect (postal code), plotted on top of a map of Belgium
for the classic and hybrid models, captures the remaining spatial heterogeneity
based on the postal code where the policyholder resides. For the classic model,
the graph shows higher claim frequencies for urban areas like Brussels in the
middle, Antwerp in the north and Liège in the east and lower claim frequencies
in the more sparsely populated regions in the south. The geographic variation
however decreases strongly in the hybrid models due to the inclusion of telematics
predictors not taken into account in the classic model. The EDF corresponding
to the spatial smooth reduced from 15.8 in the classic model to 6.4 in both hybrid
models. This is satisfactory as it means, instead of overrelying on geographical
proxies, the hybrid models are basing the insurance premium on actual differences
in driving habits (such as the proportion driven on urban roads) which is more
closely related to the accident risk.

Telematics variables In the meter-hybrid and telematics models, distance
is used as the rating unit. Similar to the time effect in the classic and time-
hybrid model, the effect of the risk exposure is estimated as a monotone increasing
function. The accident risk however does not vanish for insureds who hardly drive
any kilometers during the observation period.

The yearly distance is used in the time-hybrid model, which uses time as
exposure, to differentiate between drivers who travel many versus few kilometers
on a yearly basis. In this way, the driven distance is rescaled on a yearly basis
(see Section 4.3.2) and used as an additional risk factor having a weaker effect on
the claim frequency compared to the meter-hybrid and telematics models where
distance is used a rating unit. In both hybrid models and the telematics model,
the estimated average distance effect shows lower claim frequencies for insureds
who on average drive long distances.

The exponentiated clr transforms of the model coefficients related to the com-
positional road type predictor in the telematics model show how insureds who
drive relatively more on urban roads have higher claim frequencies and insureds
who drive relative more on the road type ‘other’ have lower claim frequencies.
The same interpretation holds for insureds who do not drive abroad during the
policy period. In the hybrid models, these effects are headed in the same direction
with the exception that motorways is perceived as riskier. The elevated accident
risk for insureds driving more on urban roads is in line with Paefgen et al. (2014),
where the driven distance is divided over ‘highway’, ‘urban’ and ‘extra-urban’
road types. The authors however neglect the compositional nature of this predic-
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tor in the analysis and do not incorporate any of the classical policy risk factors
in the logistic regression model. In Ayuso et al. (2014), the percentage of urban
driving is considered an important variable to predict either the time or the dis-
tance to the first accident, although percentages driven on different road types
are not considered. Using either a quadratic effect or a categorical effect (urban
driving > 25%) in Weibull regression models shows how increased percentages of
urban driving reduce both the expected time or distance to the first accident.

The compositional time slot predictor in the hybrid and telematics models
indicates that policyholders who drive relatively more in the morning have lower
claim frequencies and policyholders who drive relatively more in the evening and
during the night have higher claim frequencies. In Paefgen et al. (2014), the
accident risk is considered to be lower during the daytime (between 5 and 18h)
compared to the evening (between 18h and 21h), based on the estimated coef-
ficients of linear model terms of the log transformed percentages of the driven
distance in these time slots. Ayuso et al. (2014) reports how a higher percentage
of driving at night reduces the expected time to a first accident, where the effect
is modeled linearly, with no further distinction in time slots.

Driving more in the week than in the weekend increases the probability of
having a claim. An increased accident risk in case of more driving in the week
is also found in Paefgen et al. (2014), though they define weekend from Friday
to Sunday. The compositional effect of week/weekend is retained in both hybrid
models as well as the telematics model according to AIC even though it is not
statistically significant. This is due to a highly significant and positive estimated
categorical effect bweek

0 for the 73 observations with structural zeros belonging
to the rest group, see Table 4.8 of Appendix 4.7. These drivers have jointly
driven 58 000 kilometers during a combined insured policy period of 16.5 years
and reported the remarkably high number of 5 claims.

4.6 Conclusion

Telematics insurance offers new opportunities for insurers to differentiate drivers
based on their driving habits and style. By aggregating the telematics data on
the level of the policy period by policyholder and combining it with traditional
policy(holder) rating variables, we construct predictive models for the frequency
of MTPL claims at fault. Generalized additive models with a Poisson or negative
binomial response are used to model the effects of predictors in a smooth, yet
interpretive way. The divisions of the driven distance into 4 road types and 5
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time slots forms a challenge from a methodological point of view that has not
been addressed in the literature. We demonstrate how to include this information
as compositional predictors in the regression and formulate a new way of how to
interpret their effect on the average claim frequency.

Our research reveals the significant impact of the use of telematics data through
an exhaustive model selection and an assessment of the predictive performance.
The time-hybrid is the best model according to AIC and all proper scoring rules,
closely followed by the meter-hybrid model. The model using only telematics vari-
ables is ranked higher than the best classic model using only traditional policy
information.

The compositional predictors show that a further classification of the driven
distance based on the location and the time is relevant. Our contribution indicates
that driving more on urban roads, in the evening or at night and during the
week contributes to a riskier driving pattern. The best hybrid models highlight
that certain popular pricing factors (gender, fuel, postcode) are indeed proxies
for the driving habits and part of their predictive power is taken over by the
distance driven and the splits into different categories. Hence, we demonstrate
using careful statistical modeling how the use of telematics variables is an answer
to the European regulation on insurance pricing practices that bans the use of
gender as a rating factor.

In the case of multiple insured drivers, it is unclear which characteristics (such
as age, experience and gender) the insurer must use to determine the premium.
We proceed, in consultation with the Belgian insurer providing the data, by iden-
tifying the driver with the lowest experience as the main driver and use his poli-
cyholder information as predictors in the regression for tarification purposes. In
practice, when a parent adds a child as a driver in the policy, a premium surcharge
is often avoided to prevent the policyholder from lapsing. By shifting towards
pricing based on telematics information as we do in this research, this tarification
issue becomes less of a problem because the premium will be usage-based.

Pricing using telematics data can be seen as falling in between a priori and a
posteriori pricing. The driving habits and style are no traditional a priori vari-
ables since they cannot be determined before the policyholder starts to drive.
Insurers now reason that available UBI products are only purchased by drivers
who consider themselves to be either safe or low-kilometer drivers. This potential
form of positive selection, which could not be quantified based on the studied
portfolio alone, validates an upfront discount on the traditional insurance pre-
mium. Based on the telematics data collected over time, insurers can set up a
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discount structure to adapt the premium in an a posteriori way. The discount
structure can depend on the actual driven distance, with a further personalized
differentiation based on the riskiness of the profile as perceived from the driving
habits of the insured. The insights provided in this chapter reveal which elements
can be adopted in such a structure, for instance, by making kilometers driven on
urban roads or in the evening or at night more expensive.

In conclusion, telematics technology provides means to insurers to better align
premiums with risk. Pay-as-you-drive insurance is a first step in which the number
of driven kilometers, the type of road and the time of day are combined with the
traditional self-reported information such as policyholder and car characteristics
to calculate insurance premiums. A next step is pay-how-you-drive insurance,
where on top of these driving habits also the driving style is considered to assess
how risky someone drives by monitoring for instance speed infringements, harsh
braking, excessive acceleration, and cornering style. The ideas and statistical
framework presented can be extended to incorporate such additional pay-how-
you-drive predictors if they are available.

4.7 Appendix A: Structural zero patterns of the
compositional telematics predictors

We give an overview of the structural zero patterns for the division of the number
of meters in road types (Table 4.5), time slots (Table 4.6) and week/weekend
(Table 4.7). The pattern is represented in the first column by a code indicating
which components are zero (0) or non-zero (1). For each structural zero pattern,
we tabulate their absolute and relative frequency and the compositional mean
of the nonzero components, which for M observations xi = (xi1, . . . , xiD)t and
i = 1, . . . , M is defined as

x = 1
M
�

M⊕
i=1

xi = C

( M∏
i=1

xi1

)1/M

, . . . ,

(
M∏

i=1
xiD

)1/M
t

(4.8)

resulting in the closed componentwise geometric mean. Following the principle of
working on coordinates, we can alternatively write the compositional mean as

x = ilr−1

(
1

M

M∑
i=1

ilr(xi)
)

,
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where we first transform the compositional data from SD to RD−1 using the ilr
transformation, then compute the mean in RD−1 and finally apply the inverse ilr
transformation to obtain the compositional mean in SD.

Table 4.5: Structural zero patterns for the division of meters in road types.

Road type Number Percent Urban Other Motorways Abroad
1111 18821 0.5659 0.4421 0.2822 0.2516 0.0241
1110 13540 0.4071 0.5079 0.2782 0.2139 –
1100 481 0.0145 0.5923 0.4077 – –
1101 258 0.0078 0.4960 0.4648 – 0.0392
0001 131 0.0039 – – – 1
1010 7 0.0002 0.9075 – 0.0925 –
1001 7 0.0002 0.0034 – – 0.9966
1000 6 0.0002 1 – – –
0101 5 0.0001 – 0.0002 – 0.9998
0111 3 0.0001 – 0.0130 0.0833 0.9038

Table 4.6: Structural zero patterns for the division of meters in time slots.

Time slot Number Percent 6h-9h30 9h30-16h 16h-19h 19h-22h 22h-6h
11111 31886 0.9587 0.1472 0.4699 0.2159 0.1010 0.0661
11110 991 0.0298 0.2000 0.5090 0.2323 0.0587 –
11101 130 0.0039 0.2060 0.5953 0.1296 – 0.0691
11100 110 0.0033 0.2134 0.6238 0.1628 – –
01111 47 0.0014 – 0.5398 0.1983 0.1339 0.1280
01110 23 0.0007 – 0.5850 0.2793 0.1357 –
01100 22 0.0007 – 0.7912 0.2088 – –
11000 16 0.0005 0.1459 0.8541 – – –
11001 10 0.0003 0.0697 0.8000 – – 0.1304
01000 7 0.0002 – 1 – – –
01001 3 0.0001 – 0.6803 – – 0.3197
01010 2 0.0001 – 0.3054 – 0.6946 –
10000 2 0.0001 1 – – – –
01101 2 0.0001 – 0.6698 0.1744 – 0.1558
10001 2 0.0001 0.1271 – – – 0.8729
11011 2 0.0001 0.0653 0.5536 – 0.2762 0.1049
00100 1 0.0000 – – 1 – –
00110 1 0.0000 – – 0.8200 0.1800 –
10010 1 0.0000 0.9787 – – 0.0213 –
10110 1 0.0000 0.2451 – 0.2935 0.4614 –
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Table 4.7: Structural zero patterns for the division of meters in week and week-
end.

Week/weekend Number Percent Week Weekend
11 33186 0.9978 0.7490 0.2510
10 72 0.0022 1 –
01 1 0.0000 – 1

In this chapter, infrequently observed patterns are bundled into a residual
group when incorporating the compositional variables as predictors in the claim
count models leading to the distinguished structural zero patterns of Table 4.8.

Table 4.8: Structural zero patterns for the division of the number of meters in
road types, time slots and week/weekend as recognized in the claim
count models.

Road type Number Percent Urban Other Motorways Abroad
1111 18821 0.5659 0.4421 0.2822 0.2516 0.0241
1110 13540 0.4071 0.5079 0.2782 0.2139 –
0 898 0.0270 – – – –

Time slot Number Percent 6h-9h30 9h30-16h 16h-19h 19h-22h 22h-6h
11111 31886 0.9587 0.1472 0.4699 0.2159 0.1010 0.0661
0 1373 0.0413 – – – – –

Week/weekend Number Percent Week Weekend
11 33186 0.9978 0.7490 0.2510
0 73 0.0022 – –

4.8 Appendix B: Functional forms of the selected
best models

The functional form of the predictor in the preferred classic model is

ηclassic
it = β0 + β1genderit + β2materialit + β3fuelit + f1(timeit)

+f2(experienceit) + f3(bonus-malusit) + f4(age vehicleit)

+fs(latit, longit) .
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The predictor in the best time-hybrid model can be written as

ηtime-hybrid
it = β0 + β1materialit + β2fuelit + f1(time)it + f2(experienceit)

+f3(bonus-malusit) + f4(age vehicleit) + fs(latit, longit)

+f5(yearly distanceit) + f6(average distanceit)

+droad
(1111)〈b

road
(1111),x(1111)〉a + droad

(1110)〈b
road
(1110),x(1110)〉a

+(1− droad
(1111) − droad

(1110))broad
0 + dtime

(11111)〈b
time
(11111),x(11111)〉a

+(1− dtime
(11111))btime

0 + dweek
(11) 〈b

week
(11) ,x(11)〉a + (1− dweek

(11) )bweek
0 ,

and for the preferred meter-hybrid model we have

ηmeter-hybrid
it = β0 + β1materialit + β2fuelit + f1(experienceit)

+f2(bonus-malusit) + f3(age vehicleit) + fs(latit, longit)

+f4(distanceit) + f5(average distanceit)

+droad
(1111)〈b

road
(1111),x(1111)〉a + droad

(1110)〈b
road
(1110),x(1110)〉a

+(1− droad
(1111) − droad

(1110))broad
0 + dtime

(11111)〈b
time
(11111),x(11111)〉a

+(1− dtime
(11111))btime

0 + dweek
(11) 〈b

week
(11) ,x(11)〉a + (1− dweek

(11) )bweek
0 .

Finally, the predictor in the best telematics model is given by

ηtelematics
it = β0 + f1(distance)it + f2(average distanceit)

+droad
(1111)〈b

road
(1111),x(1111)〉a + droad

(1110)〈b
road
(1110),x(1110)〉a

+(1− droad
(1111) − droad

(1110))broad
0 + dtime

(11111)〈b
time
(11111),x(11111)〉a

+(1− dtime
(11111))btime

0 + dweek
(11) 〈b

week
(11) ,x(11)〉a + (1− dweek

(11) )bweek
0 .

4.9 Appendix C: Graphical model displays

The effects of each predictor variable in the best classic model (resp. telematics
model) without offset restriction are graphically displayed in Figure 4.7 (resp Fig-
ure 4.8). Similarly, the effects of each predictor variable in the best meter-hybrid
model without offset restriction are graphically displayed in Figure 4.9 for the
policy model terms and Figure 4.10 for the telematics model terms.



4.9. Appendix C: Graphical model displays 113

Figure 4.7: Multiplicative response effects of the model terms of the classic
model.

Figure 4.8: Multiplicative response effects of the model terms of the telematics
model.
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Figure 4.9: Multiplicative response effects of the policy model terms of the meter-
hybrid model.

Figure 4.10: Multiplicative response effects of the telematics model terms of the
meter-hybrid model.



4.10. Appendix D: Relative importance 115

4.10 Appendix D: Relative importance

To assess the relative importance of these variables in the model, we construct his-
tograms of the multiplicative effects by predictor for each observation in the data
set. This is done for the classic model in Figure 4.7, for the telematics model in
Figure 4.8, for the time-hybrid model in Figures 4.13 and 4.14 and for the meter-
hybrid model in Figures 4.9 and 4.10. For the hybrid models, we constructed
separate graphs for the model terms derived from the policy and telematics in-
formation. For categorical predictors this reduces to a bar plot of the categorical
effects and for the continuous and geographical predictors to a histogram of the
exponentiated smooth effects. For a compositional predictor, such as time slot,
we plot a histogram of the exponential of the term 〈b̂

time
(11111),x(11111)〉a for all

observations with pattern 11111. With the division in road types, we consider
simultaneously the terms related to patterns 1111 and 1110. To rank the influence
of the different policy and telematics variables on the claim frequency, we use the
standard deviations over all observations of the effects on the predictor scale, see
Table 4.9. Under the offset restriction, the logarithm of time or meter is used
as an explanatory variable in the predictor without any regression coefficient in
front and we report its standard deviation.

Table 4.9: Standard deviations of the effects on the predictor scale in the best
Poisson model for each of the predictor sets. The second column of
each predictor set refers to the model with the offset restriction for
either time or meter.

Predictor Classic Time-hybrid Meter-hybrid Telematics

Po
lic

y

Time 0.36 0.69 0.37 0.69
Age
Experience 0.18 0.14 0.16 0.11 0.15 0.12
Gender 0.09 0.09
Material 0.11 0.11 0.11 0.10 0.11 0.10
Postal code 0.21 0.20 0.14 0.14 0.14 0.16
Bonus-malus 0.16 0.18 0.11 0.15 0.14 0.15
Age vehicle 0.08 0.10 0.09 0.10 0.10 0.11
Kwatt 0.07 0.06 0.07 0.08
Fuel 0.09 0.09 0.05 0.05

Te
le

m
at

ic
s

Distance 0.44 0.95 0.45 0.95
Yearly distance 0.30 0.36
Average distance 0.23 0.25 0.21 0.32 0.23 0.34
Road type 0.13 0.14 0.12 0.15 0.16 0.18
Time slot 0.20 0.20 0.20 0.18 0.23 0.22
Week/weekend 0.03 0.03 0.03 0.04 0.05 0.05
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Figure 4.11: Relative frequencies of the multiplicative response effects of the
model terms of the classic model.

Figure 4.12: Relative frequencies of the multiplicative response effects of the
model terms of the telematics model.
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Figure 4.13: Relative frequencies of the multiplicative response effects of the pol-
icy model terms of the time-hybrid model.

Figure 4.14: Relative frequencies of the multiplicative response effects of the
telematics model terms of the time-hybrid model.
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Figure 4.15: Relative frequencies of the multiplicative response effects of the pol-
icy model terms of the meter-hybrid model.

Figure 4.16: Relative frequencies of the multiplicative response effects of the
telematics model terms of the meter-hybrid model.



Chapter 5

Predicting daily IBNR claim

counts using a regression

approach for the occurrence of

claims and their reporting delay

Abstract

Insurance companies need to hold capital to be able to fulfill future liabili-
ties with respect to the policies they write. Due to the delay in the reporting
of claims, not all of the claims that occurred in the past have been observed
yet. The accurate estimation of the number of incurred but not reported
claims forms an essential part of claims reserving. We present a flexible
framework to model and jointly estimate the occurrence and reporting of
claims. A regression approach is used to capture the seasonal effects of the
month, day of the week and day of the month of the occurrence date and to
incorporate the proportional effect of exposure on claim occurrences. Pa-
rameter estimates are obtained using the EM algorithm by regarding the
daily run-off triangle of claims as an incomplete data problem. The re-
sulting method is elegant, easy to understand and implement, and provides
refined forecasts on a daily level. The proposed methodology is applied to
a European general liability portfolio. Initial insight into the data set moti-
vates us to model the reporting delays in weeks combined with day-specific
reporting probabilities. The performance of our model is evaluated based
on out-of-sample data.

119
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This chapter is based on Verbelen, R., Antonio, K., Claeskens, G. and Crèvecoeur,
J. (2017). Predicting daily IBNR claim counts using a regression approach for
the occurrence of claims and their reporting delay. Working paper.

5.1 Introduction

Insurance companies need to hold sufficient reserves in order to be able to fulfill
future liabilities with respect to outstanding claims. These reserves are a key fac-
tor on the liability side of the balance sheet of the insurance company. Accurate,
reliable and stable reserving methods for a wide range of products and lines of
business are crucial to safeguard solvency, stability and profitability. With the
introduction of new regulatory guidelines for the European insurance business in
the form of Solvency II, the insurance industry has regained interest in using more
elaborate methodology to model future cash flows and meet regulators’ increas-
ing requirements. Insurance companies are strongly encouraged to supplement ad
hoc, deterministic methods with fully stochastic approaches, aiming at accurately
reflecting the riskiness in the portfolio under consideration.

The development of a single claim is visualized in the time line of Figure 5.1.
A claim occurs at a certain occurrence date socc, consequently it is declared to
the insurer at reporting date srep and one or several payments follow (at times
s1 , s2 and s3) until the closure of the claim at settlement date sset. Claims are
not reported instantaneously to the insurer, but always after a certain reporting
delay. This delay reflects the time gap between the occurrence of the claim and
the reporting to the insurance company, which can for instance be due to the fact
that the policyholder did not immediately notify his agent or only noticed the
claim after a while. After notification, claims are also not settled immediately
because it usually takes time to evaluate the whole size of the claim. Experts
have to ascertain the loss or damage and the insured and the insurance company
must come to an agreement. The settlement delay is sometimes further extended
due to additional investigations or disputes which have to be settled in court.
Intermediate payments of justified claim benefits are paid along the way which
can lead to a sequence of multiple cash flows before final settlement.

When an insurance company closes its books, it needs to predict future cash
flows of claims that have occurred in the past and are only settled in the future
in order to set aside adequate premium reserves (see e.g. Wüthrich and Merz,
2008). This assessment of the outstanding loss liabilities of past claims is referred
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to as claims reserving. At the present moment, when the reserve is calculated,
say at date τ , a claim which has already occurred (socc 6 τ) but has not yet been
reported (srep > τ) is called a Incurred But Not Reported (IBNR) claim. Between
occurrence of the accident and notification to the insurance company, the insurer
is unaware of the claim’s existence but liable for the claim amount. A claim which
has already been reported (srep 6 τ) but has not yet been settled (sset > τ) is
referred to as an Reported But Not Settled (RBNS) claim. Often, a distinction is
made between the IBNR reserve and the RBNS reserve.

Timesocc srep s1 s2 s3 sset

Occurrence

Reporting

Payments

Settlement

Reporting delay Settlement delay

Figure 5.1: Time line representing the development of a single claim.

In this chapter, we analyze and model the arrival of claims together with the
reporting delays. As such, we focus on the first part of the development of a
claim in Figure 5.1, from occurrence until reporting, and not on the settlement
delay and the claim payments. The goal is to obtain an accurate estimation of
the number of IBNR claims based on the history of reported claims. This is an
essential component to obtain a reliable estimate for the IBNR reserve.

Most existing methods for estimating the number of IBNR claims are designed
for aggregated data, conveniently summarized in a so-called run-off triangle. A
run-off triangle summarizes the reported claims by aggregating claim counts into
an incomplete two-dimensional contingency table, representing the period of oc-
currence of the claim and the reporting period (where both periods are most
often expressed in years). The industry-wide standard to estimate the future
claim counts in the lower triangle is the chain-ladder model (Mack, 1993) and its
related extensions. For an overview of this type of methods, see Taylor (2000);
England and Verrall (2002); Wüthrich and Merz (2008).

Nowadays, insurance companies keep track of more detailed information, in-
cluding the occurrence date and the reporting date of each individual claim. In
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the so-called macro-level reserving techniques, such as the chain-ladder method,
the available data is not fully used. Over the recent years, there has been increas-
ing interest in micro-level reserving techniques, which make use of the insurance
data on a more granular level. We briefly discuss a number of recent contributions
from the actuarial science literature which use a micro-level approach to predict
the number of IBNR claims.

Mart́ınez Miranda et al. (2013) extend the traditional chain-ladder framework
for the claim count data to a continuous chain-ladder setting. They reformulate
the classical actuarial technique of chain-ladder as a histogram type of estima-
tor and replacing this histogram by a two-dimensional kernel density estimator
with support on the triangle. By assuming a multiplicative kernel, the local lin-
ear density estimate can be extrapolated to the whole square which provides a
forecast for the IBNR claims in the lower triangle. The model can be applied to
data recorded in continuous time, although it is illustrated in the paper on data
aggregated on a monthly level.

Verrall and Wüthrich (2016) construct an inhomogeneous marked Poisson pro-
cess to explicitly model the claims arrival process and reporting delay in contin-
uous time based on individual claims data. The intensity of the Poisson process
incorporates a weekly period piece-wise constant pattern and a monthly seasonal
parameter. A spliced distribution with three layers (small, middle and large) is
used for the reporting delay. Due to the delay in the reporting of claims, the
marked Poisson process is thinned which complicates direct maximum likelihood
estimation.

Badescu et al. (2016b,a) and Avanzi et al. (2016) propose to model the claim
arrival process along with its reporting delays as a marked Cox process to allow
for overdispersion and serial dependency. A Cox process, or doubly stochastic
Poisson process, extends a Poisson process by modeling the intensity as a non-
negative stochastic process.

Badescu et al. (2016b) use a weekly piecewise constant stochastic process
generated by a hidden Markov model (HMM) with state-dependent Erlang distri-
butions. The discrete process of the number of observed claims during each week
then follows a Pascal-HMM with scale parameters depending on the exposure and
the reporting delay distribution. Instead of joint estimation of all parameters, a
two-stage method is applied. In a first stage, the reporting delay distribution is
estimated using a mixture of Erlangs. Observable reporting delays are however
right-truncated at different thresholds, which the fitting algorithm of Verbelen
et al. (2015) is not able to handle. This is dealt with by extracting information
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from the whole data set instead of only the training part, which is not possible
in practice. In a second stage, the parameters of the Pascal-HMM are estimated
using an Expectation-Maximization (EM) algorithm by plugging in time-varying
scale parameters based on the fitted reporting delay distribution.

Avanzi et al. (2016) use a continuous time shot noise process to model the
claim occurrence process, allowing for varying exposure and reporting delays. For
parameter estimation, claim counts are no longer regarded in continuous time but
discretized by week and, when calculating the reporting delay probabilities, it is
assumed that the arrival time is the middle of the week. Joint estimation of all
parameters relies on a complex Monte Carlo Expectation-Maximization (MCEM)
algorithm with a Reversible Jump Markov Chain Monte Carlo (RJMCMC) filter
since the likelihood of the Cox process unconditional on the shot noise process
involves a high dimensional integral, which is not computationally efficient to
calculate.

Beyond the field of actuarial science, similar statistical problems are also en-
countered in the research fields of biostatistics and epidemiology (see e.g. Harris,
1990; Lawless, 1994; Pagano et al., 1994; Midthune et al., 2005). For instance,
when estimating the incidence of a disease, it is necessary to account for delays
in the reporting of cases. Moreover, statistical surveillance systems for the timely
detection of outbreaks of infectious disease have to properly adjust for these re-
porting delays in order to take timely preventive action (see e.g. Noufaily et al.,
2015, 2016).

In our work, we present a new technique to estimate the number of events
subject to a reporting delay by explicitly modeling both the occurrence process
of the events and the reporting delay distribution using flexible regression ap-
proaches. We specifically focus on the case of IBNR claims in insurance, but our
work can also be applied in the fields mentioned earlier. In practice, insurance
companies register the occurrence date and the corresponding reporting date for
each observed claim in their administrative systems, rather than the exact occur-
rence times or reporting times. We recognize this natural time unit of one day
by constructing our models on this level instead of considering continuous time
models (such as the Poisson or Cox processes) or aggregated versions by week,
month or year (such as the traditional chain-ladder method).

A regression approach allows us to incorporate seasonal effects in both the
occurrences of claims and the reporting delays. These effects can be caused by
various time factors, such as the day of week, the day of month, or the month of
the occurrence date, as well as relevant external information (if available), such
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as economic conditions or expert-knowledge indicators which might impact the
number of claims occurring or their corresponding reporting delays. The expected
number of claims can also be made proportional to the exposure of the portfolio,
which reflects the risk the insurer is taking on and is most often measured using
the number of policyholders, the sum of the premiums, or the total sum insured.

We develop a novel estimation framework which allows for a joint estimation
of both the occurrence and the reporting delay model parameters. The key is to
treat the complexity of observing only reported claims due to reporting delays as
a missing data problem and to use the EM algorithm to simplify the estimation
significantly. Our estimation approach can be used more broadly and can be
applied, for instance, to the setting of Badescu et al. (2016a) or Verrall and
Wüthrich (2016). Its main advantage is that it avoids the use of ad hoc methods
or two-step approaches to adjust for the reporting delay.

5.2 Data and first insights

We demonstrate our methodology using the data from Antonio and Plat (2014)
on a portfolio of general liability insurance policies for private individuals from a
European insurance company. This data set has also been studied in Pigeon et al.
(2013), Pigeon et al. (2014), Godecharle and Antonio (2015) and Antonio et al.
(2016). Detailed claims information is available from January 1997 until August
2009. This includes the occurrence date of a claim and the time between occur-
rence and notification to the insurance company. Claims are also categorized into
bodily injury or material damage claims, although we will not make a distinction
between both.

As a measure for the exposure to risk, the main driver underlying the oc-
currences of claims, we use the number of policies. This is available by month
from January 2000 onwards. Exposure is expressed as earned exposure, i.e. the
exposure units actually exposed to risk during the period. This means that a
policy covered during the whole month of January will contribute 31/365th to
the exposure of that month, 10/365th if it is only covered during 10 days, and
so on. Earned exposure is not available on a daily level so instead we transform
the monthly exposure to daily exposure by diving by the number of days in each
month. Figure 5.2a shows the resulting exposure per day which is an increasing
stepwise function, indicating an increase in the portfolio size over time. Since
exposure information is only available from January 2000 onwards and to enable
out-of-sample prediction, we restrict our analysis to claims that have occurred
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Figure 5.2: From January 1, 2000 until August 31, 2004, we plot (a) the earned
exposure per day and (b) the number of claims occurring on that day
based on the full data set until August 2009.

between January 1, 2000 and August 31, 2004.
We assume that at the end of this time window, on August 31, 2004, which

will be referred to as the evaluation date, the insurance company has to set capital
aside to cover for future payments related to the reported claims as well as to IBNR
claims. This requires an estimate of the total number of IBNR claim counts, as
well as their timing of reporting, as a building block to model such future cash
flows. Based on the full data set until August 2009, we know that during this time
frame 176 919 claims have occurred which are plotted by their occurrence date in
Figure 5.2b. The graph shows a clear seasonal pattern, but also contains many
days with an outlying high number of occurred claims. A large amount of these
dates correspond to the 1st or the 15th of the month. The highest claim counts
have occurred on October 27, 2002, due to a major storm, and on January 1st of
each year. However, since claims are not immediately notified to the insurer, only
174 867 of these have been reported by the evaluation date, as depicted in blue the
daily run-off triangle in Figure 5.3. The remaining 2052 are referred to as IBNR
claims, i.e. claims which have occurred between January 2000 and August 2004
but have only been reported after the moment of evaluation (and before August
31, 2009). These are graphically illustrated in red in Figure 5.3.

An accurate estimation of IBNR claim counts requires an understanding and
modeling of the reporting delay distribution. Due to the reporting delay, only a
portion of the occurred claims is observed. If a claim occurs on a certain date
t and the evaluation date is τ , then the claim is only observed if the reporting
delay is smaller than or equal to τ − t days. In statistical terminology, we call the
total number of claims occurring on day t right censored and the reporting delay
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Figure 5.3: Daily run-off triangle of claims with occurrence dates between Jan-
uary 1, 2000 and August 31, 2004. The black line indicates the
evaluation date, August 31, 2004. Only the claims in the upper tri-
angle depicted as blue dots are observed at the evaluation date. The
remaining claims in the lower triangle depicted as red triangles are
the IBNR claims based on the full data set until August 2009 and
have to be predicted.

distribution of the observed claims occurring on day t right-truncated at τ−t (see
e.g. Klein and Moeschberger, 2003). Special care has to be taken in the analysis
of these data, see Section 5.3.3. In the remainder of this section, we analyze the
empirical distribution of the reporting delay. For now, in this exploratory analysis
only, we circumvent the issue of right-truncation by extracting the reporting delays
corresponding to claims that occurred between January 2000 and August 2004 and
have been reported before August 2009, hence 5 years after the evaluation date,
from the full data set.

In Figure 5.4, we show a bar plot of the empirical probability mass function
of the reporting delay, limited to the first 4 weeks, for claims which occurred on
a Monday in graph (a), a Thursday in graph (b) and a Saturday in graph (c).
Note that a reporting delay of zero corresponds with a reporting on the day of
occurrence. These graphs reveal two important features of the reporting delay
distribution: a weekly declining pattern and a daily pattern within each week
which depends on the day of the week of the occurrence date of the claim. First,
we notice how the majority of claims is reported in the first couple of weeks after
occurrence and the reporting delay probabilities decrease from one week to the
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next. Second, from the second week onwards, the reporting delay probabilities
are decreasing from the first working day of the reporting week (wday1) to the
last working day (wday5) and are close to zero during the weekend. The ordering
of these 7 days within the reporting week depends on the day of the week of
the occurrence date of the claim as shown in Table 5.1. Only a small portion
of claims are being reported on Saturdays and nearly none on Sundays. In fact,
in the entire observed portion of the data, only 3 claims have been reported on
Sunday.
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Figure 5.4: Bar plot of the empirical reporting delay distribution in the first 4
weeks for claims that occurred on (a) Monday, (b) Thursday and
(c) Saturday between January 2000 and August 2004 and have been
reported before August 2009.

In order to capture these phenomena, we model in the next section the report-
ing delay probabilities in weeks separately from the day probabilities. Reporting
delay in weeks refers to the number of weeks that elapses between occurrence and
reporting of the claim. A reporting delay in weeks equal to zero hereby implies
that the claim is reported within the first week after its occurrence. The empir-
ical reporting delay distribution in weeks can be well represented by a negative
binomial distribution as is shown in Figures 5.5a and 5.5b. The reporting day
probabilities model on which day a claim is reported within a given reporting
week. The empirical day probabilities during the first reporting week are visual-
ized in Figure 5.6a grouped by the day of the week of the occurrence date. From
Monday to Thursday, the day probability in the first reporting week is highest
on wday2, corresponding to one day after the claim occurred. For a Friday, the
probability to report on the same day (wday1) is about as high as the probability
to report on Monday after the weekend (wday2). For Saturday and Sunday, the
day probability in the first reporting week is highest on wday1, corresponding to



128 IBNR claims reserving

Monday after the weekend. Since, on average, over 60% of the claims are reported
in the first week (see Figure 5.5), the day probabilities during the first reporting
week will be modeled separately for each day of the week of the occurrence date.
From the second reporting week onwards, these probabilities behave very similarly
within each reporting week, which is why we combine them in Figure 5.6b. The
day probabilities also become comparable for each occurrence day of the week.
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Figure 5.5: Bar plot of the empirical reporting delay distribution in weeks and
its negative binomial fit for the first 11 weeks in (a) and for the first
year in (b) based on claims that occurred between January 2000 and
August 2004 and have been reported before August 2009.
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Figure 5.6: Stacked bar plots of the empirical reporting delay day probabilities
within a reporting week according to the day of the week of the oc-
currence date. Based on claims that occurred between January 2000
and August 2004 and have been reported before August 2009, we
show the empirical day probabilities during the first reporting week
in (a) and from the second reporting week onwards in (b). The or-
dering of the working days in a reporting week according to the day
of the week of the occurrence date is clarified in Table 5.1.
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Table 5.1: Ordering of the working days in the week (wday) by the day of the
week (dow) of the occurrence date. wday3, for example, denotes the
third working day of the reporting week, which is Wednesday when the
claim occurred on Monday and a Monday when the claim occurred on
Thursday, and so on.

wday
dow wday1 wday2 wday3 wday4 wday5 Saturday Sunday
Monday Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Tuesday Tuesday Wednesday Thursday Friday Monday Saturday Sunday
Wednesday Wednesday Thursday Friday Monday Tuesday Saturday Sunday
Thursday Thursday Friday Monday Tuesday Wednesday Saturday Sunday
Friday Friday Monday Tuesday Wednesday Thursday Saturday Sunday
Saturday Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sunday

5.3 The statistical model

5.3.1 Daily claim count data

We model insurance claim counts on a daily level and denote the total number of
claims which occurred on day t by Nt, where the integer t indicates the occurrence
date and ranges from 1 to τ . The number of these claims which have been reported
to the insurer after d days are denoted as Ntd such that

Nt =
∞∑

d=0
Ntd .

Due to this reporting delay, only part of these claims have been reported to the
insurer before or at the moment of evaluation, τ . Namely only those claims which
have a reporting delay smaller than or equal to τ − t. We denote the observed
number of claims which occurred on day t by

NR
t =

τ−t∑
d=0

Ntd .

Only the observed claims NR = {Ntd | 1 6 t 6 τ, d > 0, t + d 6 τ} can be used
on the moment of evaluation when the outstanding claims liabilities have to be
calculated. These can be represented in a daily run-off triangle as shown in Table
5.2. The occurrence date is indicated in the rows and the reporting delay in the
columns. Claim counts on the diagonal for which t+d is constant are all reported
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on the same calendar day t + d, with τ being the last calendar day observed. The
objective is to predict the IBNR claim counts N IBNR = {Ntd | 1 6 t 6 τ, d >

0, t+d > τ} in the lower part of the daily claims triangle in Table 5.2. We denote
the total IBNR claim counts per day by

N IBNR
t =

∞∑
d=τ−t+1

Ntd ,

and the total IBNR claim count over all occurrence days by

N IBNR =
τ∑

t=1
N IBNR

t =
τ∑

t=1

∞∑
d=τ−t+1

Ntd .

Table 5.2: Run-off triangle with daily claim counts. Only the claim counts in
the upper triangle are observed, whereas the claim counts in the lower
triangle have to be predicted.

Occurrence Reporting delay (in days)
day 0 · · · τ − t · · · τ − 1
1 N10 · · · N1,τ−t · · · N1,τ−1
...
t Nt0 · · · Nt,τ−t

... IBNR
τ Nτ0

5.3.2 Model assumptions

The statistical analysis of the daily claim counts using our proposed model is
based on the following two assumptions:

(A1) The daily total claim counts Nt for t = 1, . . . , τ are independently Poisson
distributed with intensity λt = et exp(x′

tα), where et is the exposure, xt is
the vector of covariate information corresponding to occurrence day t and
α is a parameter vector.

(A2) Conditional on Nt, the claim counts Ntd for d = 0, 1, 2, . . ., are multinomially
distributed with probabilities ptd. These reporting delay probabilities are
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structured as a product of week probabilities and day probabilities:

ptd =

pW
t0 · p1

td for d < 7

pW
t
⌊

d
7

⌋ · p2
td otherwise.

The reporting delay week probabilities,

pW
tw = Γ(φ + w)

w!Γ(φ)
φφµw

t

(φ + µt)φ+w
for w = 0, 1, 2, . . . , (5.1)

are modeled using the probability mass function of a negative binomial dis-
tribution with expected value µt = exp(z′

tβ) and variance µt + µ2
t /φ, where

φ is the dispersion parameter and zt is the covariate vector corresponding
to occurrence day t. The reporting delay day probabilities in the first week
can be written in a symbolical way as

p1
td = P1(dow(t), wday(t, t + d)) , (5.2)

where dow(t) denotes the day of the week of occurrence date t and wday(t, t+
d) denotes the working day of the week of the reporting date t + d, given
that the corresponding occurrence date is t. P1 is a 7× 7-matrix which has
rows and columns as in Table 5.1 and contains the day probabilities related
to the first week. Each element in P1 is between 0 and 1 and all row sums
equal 1. Similarly, the reporting delay day probabilities from the second
week onwards are given by

p2
td = P2(wday(t, t + d)) , (5.3)

where P2 is a 1× 7-matrix which has columns as in Table 5.1 and elements
between 0 and 1 that sum up to 1.

Allowing for covariates in the model for the occurrences of claims as well as the
model for reporting delays in weeks allows us to build flexible models. The ex-
pected number of claim occurrences can be made proportional to the exposure
or depend on several measures of exposure. Evolutions over time or seasonal
trends can be captured to improve forecast predictions. Fluctuations in both
claim counts and their reporting delays by month, day of the month or day of the
week of the occurrence date can be explicitly modeled. Additionally, an insurer
can also model relationships with external covariates which might influence the
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arrival process of claims. Potential effects might be plausible for economic circum-
stances, business cycles and weather conditions. On top of that, the day-specific
particularities in the reporting delay we noticed in Section 5.1 and displayed in
Figure 5.6 are captured using designated day probabilities.

5.3.3 Parameter estimation using the EM algorithm

We bundle the parameters to be estimated in Θ = {α,β, φ, P1, P2}. Based on
the assumptions in Section 5.3.2, the daily claim counts Ntd are independently
Poisson distributed with intensities λtptd for t = 1, . . . , τ and d = 0, 1, 2, . . .. This
can be seen by writing the joint probability of Ntd = ntd for d = 0, 1, 2, . . . as the
product of the probability of their sum Nt being equal to nt =

∑∞
d=0 ntd and the

conditional multinomial probability:

P(Nt0 = nt0, Nt1 = nt1, Nt2 = nt2, . . .)

= P(Nt = nt) · P(Nt0 = nt0, Nt1 = nt1, Nt2 = nt2, . . . | Nt = nt)

= exp(−λt)λnt
t

nt!
· nt!∏∞

d=0 ntd!
·

∞∏
d=0

(ptd)ntd

=
∞∏

d=0

exp(−λtptd)(λtptd)ntd

ntd! ,

which factorizes into Poisson probabilities. This property is sometimes referred to
as the thinning property of Poisson random variables. In particular, the observed
claim count NR

t on day t is Poisson distributed with intensity λtp
R
t where pR

t =∑τ−t
d=0 ptd and the IBNR claim count N IBNR

t is Poisson distributed with intensity
λtp

IBNR
t where pIBNR

t = 1 − pR
t . Conditional on NR

t , the observed daily claim
counts {Ntd | d = 0, 1, . . . , τ − t} are multinomially distributed with parameters
NR

t and {ptd/pR
t | d = 0, 1, . . . , τ − t}, since we have to account for the right-

truncation of the reporting delay.
The likelihood of the observed upper run-off triangle for our chosen model

can then be written as the product of a Poisson likelihood and a multinomial
likelihood,

L(Θ;NR) =
τ∏

t=1

exp(−λtp
R
t )
(
λtp

R
t

)NR
t

NR
t !

NR
t !∏τ−t

d=0 Ntd!

τ−t∏
d=0

(
ptd

pR
t

)Ntd

. (5.4)

Equivalently, the likelihood can also be constructed by treating the daily claim
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counts as right censored, since the number of IBNR claims is unknown,

L(Θ;NR) =
τ∏

t=1

∞∑
n=NR

t

exp(−λt)λn
t

n! · n!∏τ−t
d=0 Ntd! · (n−NR

t )!

·
τ−t∏
d=0

(ptd)Ntd ·
(
pIBNR

t

)n−NR
t .

Indeed, this expression reduces to (5.4) by rewriting the sum over n using the
Taylor expansion for the exponential function. The corresponding log-likelihood
equals

logL(Θ;NR) = −
τ∑

t=1
λtp

R
t +

τ∑
t=1

NR
t log(λt)

+
τ∑

t=1

τ−t∑
d=0

Ntd log(ptd)−
τ∑

t=1

τ−t∑
d=0

log(Ntd!) . (5.5)

Note that, due to the right truncation of the reporting delay (or, the right censor-
ing of the claim counts), the log-likelihood (5.5) contains terms which depend on
the parameters of both the Poisson model for claim occurrences and the report-
ing delay distribution. This complicates direct maximum likelihood estimation as
it prevents separate optimization with respect to each of these parameter blocks.
Optimization using a standard numerical method such as Newton-Raphson is still
feasible, but we cannot rely on statistical software packages and we need to derive
the analytical expressions of the gradient and Hessian of the log-likelihood (5.5).
To simplify computations, shortcuts have been used to estimate parameters in re-
lated works, such as plug-in estimates for the weekly periodic occurrence pattern
in Verrall and Wüthrich (2016) or a two-stage method in which the reporting de-
lay distribution is estimated first and then plugged in to estimate the parameters
related to the occurrence process (Antonio and Plat, 2014; Badescu et al., 2016a).

Instead, we choose to treat the truncation as a missing data problem and
employ the EM algorithm (Dempster et al., 1977; McLachlan and Krishnan, 2008)
to simplify maximum likelihood parameter estimation. Consider the complete
version of the data N = NR∪N IBNR = {Ntd | 1 6 t 6 τ, d > 0} which augments
the observed daily claim counts from the upper part of the run-off triangle in Table
5.2 with the unknown values of the future claim counts in the lower triangle. Given
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the complete data N , we can construct the complete log-likelihood function

logLc(Θ;N) = −
τ∑

t=1
λt +

τ∑
t=1

Nt log(λt)

+
τ∑

t=1

∞∑
d=0

Ntd log(ptd)−
τ∑

t=1

∞∑
d=0

log(Ntd!) . (5.6)

which allows for a separate estimation of the parameters of the claim occurrence
model (appearing in λt) and those of the reporting delay distribution (appearing
in ptd). The observed data log-likelihood (5.5) can be maximized by iteratively
maximizing the complete data log-likelihood (5.6) using the EM algorithm. How-
ever, as we do not fully observe the complete data, the complete log-likelihood is
a random variable. Therefore, it is not possible to directly optimize (5.6). Yet,
the EM algorithm exploits the simpler form of the complete log-likelihood by it-
erating between an E-step or expectation step and M-step or maximization step.
Applied to our setting, the IBNR claim counts in the lower triangle of Table 5.2
are replaced by their expected values in the E-step and the log-likelihood of the
augmented data is maximized in the M-step. The M-step will still require numer-
ical optimization, but the parameters with respect to the claim occurrence model
can be estimated separately from the reporting delay parameters and standard
software routines can be utilized in the absence of truncation. We discuss these
steps in more detail.

E-step In the kth iteration of the E-step, we take the conditional expectation
of the complete log-likelihood (5.5) given the incomplete data NR and using the
current estimate Θ(k−1) of the parameter vector Θ:

Q(Θ; Θ(k−1)) = E
(

logLc(Θ;N) |NR; Θ(k−1)
)

. (5.7)

This requires us to compute the expected values of the future claim counts

N
(k)
td = E

[
Ntd |NR; Θ(k−1)

]
=

Ntd if d 6 τ − t

λ
(k−1)
t p

(k−1)
td otherwise,

(5.8)

for t = 1, . . . , τ and the total daily claim counts N
(k)
t =

∑τ−t
d=0 Ntd+

∑∞
d=τ−t+1 N

(k)
td .

The terms in (5.7) containing E
(

log(Ntd!) |NR; Θ(k−1)
)

do not play a role in
the EM algorithm as they do not depend on the unknown parameter vector Θ.



5.3. The statistical model 135

M-step In the kth iteration of the M-step, we maximize the expected value
(5.7) of the complete data log-likelihood obtained in the E-step with respect to
the parameter vector Θ. In order to optimize (5.7) with respect to α as defined
in model assumption (A1), we have to maximize the terms related to the claim
occurrence model,

−
τ∑

t=1
λt +

τ∑
t=1

N
(k)
t log(λt) = −

τ∑
t=1

et exp(x′
tα) +

τ∑
t=1

N
(k)
t (log(et) +x′

tα) , (5.9)

which is a weighted Poisson log-likelihood with an offset term (related to the
exposure). The parameter values optimizing (5.9) are denoted by α(k). Based
on model assumption (A2), updating the estimates for the parameters of the
reporting delay distribution requires the maximization of

τ∑
t=1

∞∑
d=0

N
(k)
td log(ptd) =

τ∑
t=1

( ∞∑
d=0

N
(k)
td log

(
pW

t
⌊

d
7

⌋)+
6∑

d=0
N

(k)
td log(p1

td)

+
6∑

d=0
N

(k)
td log(p1

td) +
∞∑

d=7
N

(k)
td log(p2

td)
)

.

From a numerical point of view, we truncate the infinite sums over the reporting
delay d at d = τ − 1, which corresponds to completing the run-off triangle in
Table 5.2 without further extending it. Numerical experiments have shown that
this choice is sufficiently high in our setting as the subsequent terms are negligible.
The new parameter estimates β(k) and φ(k) of the negative binomial distribution
for the reporting delay in weeks are found by optimizing the weighted negative
binomial log-likelihood,

τ∑
t=1

∞∑
d=0

N
(k)
td log

(
pW

t
⌊

d
7

⌋) =
τ∑

t=1

∞∑
w=0

( 6∑
d=0

N
(k)
t,7w+d

)
log
(
pW

tw

)
, (5.10)

where pW
tw is given in (5.1) with µt = exp(z′

tβ). Both for optimizing (5.9) and
(5.10), standard software packages can be used. Optimizing (5.7) with respect to
the day probabilities (5.2) and (5.3) and under the restriction that the sums of
the rows (the sums over the working days of the week) equal 1 leads to

(
P1(u, v)

)(k) =

∑
t=1,...,τ
dow(t)=u

∑
d=0,...,6

wday(t,t+d)=v

N
(k)
td∑

t=1,...,τ
dow(t)=u

∑6
d=0 N

(k)
td

,
u = Monday, . . . , Sunday
v = wday1, . . . , Sunday
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and

(
P2(v)

)(k) =

∑τ
t=1
∑

d=7,...,∞
wday(t,t+d)=v

N
(k)
td∑τ

t=1
∑∞

d=7 N
(k)
td

, v = wday1, . . . , Sunday .

Initial step The first E-step of the EM algorithm with k = 1 requires a starting
value Θ(0) for the parameter set. Our strategy is to first apply the chain-ladder
method on the daily claim counts to obtain initial predictions N

(0)
td of the future

claim counts in the lower triangle of Table 5.2. Then, we initialize Θ by applying
an initial M-step based on these initial claim count estimates. More specifically,
we define the cumulative claim counts as

Ctd =
d∑

j=0
Ntj for t = 1, . . . , τ, and d = 0, . . . , τ − 1 ,

and estimate the development factors of the chain-ladder technique on a daily
level as

f̂d =
∑τ−d

t=1 Ctd∑τ−d
t=1 Ct,d−1

for d = 1, . . . , τ − 1 .

The chain-ladder technique applies these development factors to the latest cumu-
lative claim count in each row to produce forecasts of future cumulative claim
counts:

Ĉt,d = Ct,τ−tf̂τ−t+1 . . . f̂d for t = 2, . . . , τ, and d = τ − t + 1, . . . , τ − 1 .

We use these chain-ladder estimates for the daily cumulative claim counts to
initialize the expected incremental claim counts as

N
(0)
td =


Ntd if d 6 τ − t

Ĉt,τ−t+1 − Ct,τ−t if d = τ − t + 1

Ĉtd − Ĉt,d−1 otherwise,

for t = 1, . . . , τ and apply an M-step, as outlined above with k = 0, to find decent
starting values Θ(0).

Convergence The log-likelihood (5.5) increases with each EM iteration (McLach-
lan and Krishnan, 2008). Given proper starting values, the sequence Θ(k) con-
verges to the maximum likelihood estimate (MLE) of Θ corresponding to the
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(incomplete data) log-likelihood logL(Θ;NR) in (5.5). The stopping criterion
we apply is based on the relative change in the log-likelihood. Namely, we iterate
until the absolute value of

logL(Θ(k);NR)− logL(Θ(k−1);NR)
0.1 + logL(Θ(k);NR)

becomes sufficiently small. The parameter vector estimate upon convergence is
denoted by

Θ̂ = {α̂, β̂, φ̂, P̂1, P̂2} .

5.3.4 Asymptotic variance-covariance matrix

The estimator for Θ obtained from the EM algorithm has the same limit as the
MLE, whenever the starting value is adequately chosen. Hence, the maximum
likelihood asymptotic theory in terms of consistency, asymptotic normality and
asymptotic efficiency applies. In particular, if we denote the (incomplete data)
score statistic as

S(Θ;NR) = ∂

∂Θ logL(Θ;NR) ,

and the (incomplete data) observed information matrix

I(Θ;NR) = − ∂2

∂Θ∂Θ′ logL(Θ;NR) ,

then the asymptotic variance-covariance matrix of the MLE Θ̂ is equal to the
inverse of the (incomplete data) expected (Fisher) information matrix I(Θ) given
by

I(Θ) = E
[
I(Θ;NR) | Θ

]
. (5.11)

The asymptotic variance-covariance matrix can be approximated by I−1(Θ̂). It is
also common practice to estimate this matrix using the inverse of the observed in-
formation matrix evaluated at Θ = Θ̂, i.e. I−1(Θ̂;NR). This matrix is produced
as a by-product when applying Newton-Raphson’s method.

When the parameters are estimated using the EM algorithm, the observed
information matrix is however not directly accessible. Moreover, the main reason
why the EM algorithm is chosen over Newton-Raphson’s method is because it
avoids the computation of the first- and second-order partial derivatives of the
incomplete data log-likelihood. In case an estimate of the covariance matrix of
the MLE is required, Louis (1982) showed how the observed information matrix
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can be expressed in terms of the gradient and curvature of the complete data
log-likelihood function. For this purpose, we introduce the complete data score
statistic

Sc(Θ;N) = ∂

∂Θ logLc(Θ;N) ,

and we let
Ic(Θ;N) = − ∂2

∂Θ∂Θ′ logLc(Θ;N) ,

with its conditional expectation given NR denoted by

Ic(Θ;NR) = E
[
Ic(Θ;N) |NR; Θ

]
. (5.12)

The complete data expected information matrix is then given by

Ic(Θ) = E [Ic(Θ;N) | Θ] .

The missing information principle writes the observed information (5.11) as the
(conditional expected) complete information (5.12) minus the missing informa-
tion,

I(Θ;NR) = Ic(Θ;NR)− Im(Θ;NR) (5.13)

where
Im(Θ;NR) = −E

[
∂2

∂Θ∂Θ′ log Lc(Θ;N)
L(Θ;NR)

∣∣∣∣NR; Θ
]

denotes the missing information matrix. Louis (1982) derived that the missing
information matrix can be computed as

Im(Θ;NR) = E
[
Sc(Θ;N)S′

c(Θ;N) |NR; Θ
]
− S(Θ;NR)S′(Θ;NR)

= Cov
[
Sc(Θ;N) |NR; Θ

]
. (5.14)

As such, the observed information matrix in (5.13) can be expressed in terms
of conditional moments of the first- and second-order partial derivatives of the
complete data log-likelihood function, which is more amenable to analytical cal-
culations than the incomplete data analog. By averaging both sides of (5.13) over
the distribution of NR, we get an expression for the expected information matrix

I(Θ) = Ic(Θ)− E
[
Im(Θ;NR) | Θ

]
. (5.15)

In our framework, we are mainly interested in the parameter uncertainty con-
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cerning the regressional parameters α of the Poisson occurrence model and the
β of the negative binomial reporting delay distribution in weeks. We assess both
covariance matrices separately in Appendix 5.6.

5.3.5 Prediction of IBNR claim counts

Using the estimated parameter vector Θ̂ of the reserving model, we can pre-
dict the daily IBNR claim counts in the lower triangle of Table 5.2. Point es-
timates for all Ntd ∈ N IBNR can be obtained using the expected values N̂td =
E
[
Ntd |NR; Θ̂

]
= λ̂t p̂td. Similarly, the total IBNR claim counts per day are es-

timated by N̂ IBNR
t =

∑∞
d=τ−t+1 N̂td = λ̂t p̂IBNR

t and the total IBNR claim count
over all occurrence days by N̂ IBNR =

∑τ
t=1 N̂ IBNR

t . Moreover, under the model
assumptions of Section 5.3.2, the future daily claim counts Ntd are independently
Poisson distributed and we thus have that

Ntd ∼ Poisson(λt ptd) , N IBNR
t ∼ Poisson(λt pIBNR

t ) ,

and N IBNR ∼ Poisson
(

τ∑
t=1

λt pIBNR
t

)
.

This allows us to construct prediction intervals and to make probabilistic state-
ments concerning the claim count component of the IBNR reserve by replacing
the intensities by their maximum likelihood estimates.

5.4 Results

We apply our model outlined in Section 5.3 to the data set of general liability
insurance policies discussed in Section 5.2. To illustrate the regressional approach
of our methodology we use the month, the day of the week and the day of the
month of the occurrence date as regressors in both the Poisson model for claim
occurrences and the negative binomial model for the reporting delay in weeks.
These categorical variables are incorporated into the covariate vectors xt and zt

using dummy coding with the first level as reference category and by including
an intercept term. Earned exposure (see Figure 5.2a) is used as the offset et in
the Poisson occurrence model. We fit the model using the observed data up to
the evaluation date, August 31, 2004. The remaining out-of-sample data until
August 31, 2009 will be used to evaluate the model predictions.
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5.4.1 Parameter estimates

The parameters Θ = {α,β, φ, P1, P2} are estimated using the EM algorithm
of Section 5.3.3. The maximum likelihood estimates of the day probabilities P1

within the first reporting week are reported in Table 5.3 and those of the day
probabilities P2 from the second reporting week onwards are given in Table 5.4.
Recall that the ordering of the working days in a reporting week depends on the
occurrence day of the week (dow), see Table 5.1. As motivated by Figure 5.6, the
day probabilities in the first week have separate estimates by dow, whereas no
distinction is made from the second week onwards. The estimated probabilities
P̂1 are very close to the empirical values from Figure 5.6a and the estimated
probabilities P̂2 are very close to the empirical values from Figure 5.6b, averaged
over dow.

The effects related to the categorical predictors month, day of the month and
day of the week of the occurrence date are visualized in Figure 5.7 for the Pois-
son regression model of the claim occurrences and in Figure 5.8 for the negative
binomial regression model of the reporting delay in weeks. The corresponding
maximum likelihood estimates of the parameter vectors α (resp. β), except for

Table 5.3: Maximum likelihood estimates of the day probabilities P1 within the
first reporting week. Separate reporting day probabilities are estimated
for each day of the week (dow) of the occurrence date, as shown in
the rows.

wday
dow wday1 wday2 wday3 wday4 wday5 Saturday Sunday
Monday 0.2600 0.4006 0.1638 0.0957 0.0744 0.0055 0.0000
Tuesday 0.2722 0.4131 0.1486 0.0900 0.0689 0.0072 0.0000
Wednesday 0.2699 0.3802 0.1739 0.0972 0.0700 0.0088 0.0000
Thursday 0.2639 0.4106 0.1464 0.0925 0.0695 0.0170 0.0000
Friday 0.2985 0.3003 0.1527 0.1006 0.0712 0.0767 0.0000
Saturday 0.4575 0.2045 0.1284 0.0843 0.0722 0.0531 0.0000
Sunday 0.4778 0.2232 0.1375 0.0890 0.0673 0.0051 0.0001

Table 5.4: Maximum likelihood estimates of the day probabilities P2 from the
second reporting week onwards.

wday1 wday2 wday3 wday4 wday5 Saturday Sunday
0.2886 0.2117 0.1829 0.1542 0.1429 0.0196 0.0000
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Figure 5.7: Maximum likelihood estimates for the parameters in α correspond-
ing to the categorical effects of the month, the day of the week and
the day of the month of the occurrence date in the Poisson claim
occurrence model. 95% confidence intervals are constructed using
the inverse of the expected information matrix Iα,α(Θ̂) derived in
Appendix 5.6.

the intercept term, are plotted along with 95% confidence intervals based on the
inverse of the expected information matrix Iα,α(Θ̂) (resp. Iβ,β(Θ̂)) as derived in
Appendix 5.6. For completeness, we also report that in the Poisson model the in-
tercept is estimated as −2.4044 (S.E. 0.0145) and in the negative binomial model
the intercept is estimated as 1.8316 (S.E. 0.0323) and the dispersion parameter φ

as 0.1775.
The month predictor reveals a seasonal pattern in which the number of claims

rises in the middle of the year and falls around the year end. Most claims occur
in June and least in December with an estimated difference in expected value of
32%. The reporting delay in weeks on the other hand has the highest expected
values in winter months and the lowest in autumn months.

Modeling the seasonal variations in the occurrence process with respect to the
day of the week shows an increase in the expectation of the number of claims on
Saturdays and a slight decrease on Tuesdays and Thursdays. The reporting delays
only vary mildly by day of the week with the highest estimates on Thursdays and
Fridays and the lowest on Sundays.
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Figure 5.8: Maximum likelihood estimates for the parameters in β correspond-
ing to the categorical effects of the month, the day of the week and
the day of the month of the occurrence date in the negative binomial
reporting delay model. 95% confidence intervals are constructed us-
ing the inverse of the expected information matrix Iβ,β(Θ̂) derived
in Appendix 5.6.

The categorical effect of the day of the month shows a remarkable pattern
which is similar in both the claim occurrence model and the reporting delay
model. On the 1st and 15th, the number of claims as well as the reporting delays
have significantly higher expected values. A similar effect, but of a lower degree,
is also present for the 5th, 10th, 20th, and 30th or 31st day of each month. This
pattern can most likely be explained by rounding errors of the occurrence date
when insureds have to report a claim which took place several weeks or months
ago. As the policyholder can no longer precisely remember the actual occurrence
date, he simply reports the first day or the middle of the month in which the
claim occurred or, to a lesser extent, replaces the month day by a value which is
a multiple of 5. Many of the outlying observations from Figure 5.2b correspond
to these values for the occurrence day of the month. Since this misreporting of
dates is more likely to occur for claims which are only reported after a longer
time period, we simultaneously see an increase in the expected reporting delay
for claims occurring on these rounded month days.
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5.4.2 Prediction of IBNR claim counts

Besides providing insight in the claim occurrence process, the main goal of our
model is to estimate the number of IBNR claims. In our setting, the IBNR claims
are those with occurrence date in between January 2000 and August 2004 that
have only been reported after the evaluation date, August 31, 2004. We know
there are 2052 such IBNR claims present in the full data set until August 2009
of which we know the corresponding occurrence date and reporting delay, see
the lower triangle in Figure 5.3. These data are used to assess the out-of-sample
predictive performance.

Based on the fitted model where τ corresponds to August 31, 2004, the total
number of IBNR claims is estimated as N̂ IBNR = 2066.03, which is very close
to the actual count. Moreover, the distributional assumptions of our model can
be used to provide a 95% prediction interval given by [1977, 2156], see Section
5.3.5. Furthermore, since the model is defined on a daily level, the total IBNR
prediction can be divided into daily forecasts by occurrence date and by reporting
date. This allows insurers to get a refined projection of the expected number of
IBNR claims according to their occurrence time points and their future reporting
times. To illustrate this strong point of our model, we predict the IBNR claim
counts by occurrence dates in Figure 5.9 and by reporting dates in Figure 5.10.

In Figure 5.9a we plot point estimates and 95% prediction intervals for N IBNR
t

with t corresponding to occurrences dates in between July 1, 2004, and August
31, 2004, i.e. the last two months from our training period. The predictions
follow the same trend as the actual IBNR claim counts derived from the full data
set until August 2009. In particular, we notice for instance how IBNR claims
are elevated on the first day and middle of each month, in line with our earlier
findings. In Figure 5.9b (resp. Figure 5.9c) we group the occurrence dates by
weeks (resp. months) prior to the evaluation date and show the IBNR claim count
predictions corresponding to the past 26 weeks (resp. 12 months). We notice how,
also over longer time spans, the predictions by occurrence week or month follow
the pattern observed in the actual IBNR counts.

In Figure 5.10 we disperse the total predicted IBNR claim count according to
the date on which the IBNR claims will be reported to the insurer. It means we
now focus on estimating

∑τ
t=1 Nt,ρ−t for ρ = τ + 1, τ + 2, . . ., i.e. the number of

IBNR claims reported on day 1, 2, . . . of the out-of-sample period. This forms an
appealing way to use our model in practice as it gives the insurer a refined view
on the reporting times of the IBNR claims. The predictions on a daily level in
Figure 5.10a range from September 1, 2004, until November 7, 2004 and are again
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Figure 5.9: Predictions of the IBNR claim counts by occurrence date. Prediction
intervals are constructed at the 95% confidence level. The actual
IBNR claim counts are derived based on the full data set until August
2009. In (a), we show predictions by day for occurrence dates in
between July 1, 2004, and August 31, 2004. In (b), we group the
occurrence dates by weeks (7 days) prior to the evaluation date and
show the predictions corresponding to the past 26 weeks. In (c), we
group the occurrence dates by months (30 days) from the evaluation
date and show the predictions corresponding to the past 12 months.

accompanied by 95% prediction intervals. When compared to the out-of-sample
actual values, the forecasts clearly capture the downward trend in the reporting of
IBNR claims and the nearly absence of reporting in weekends. This is primarily
the case due to the day probabilities in our model which reflect the day-specific
aspects of the reporting delay. Similar as before, in Figure 5.10b (resp. Figure
5.10c) we group the reporting dates by weeks (resp. months) after the evaluation
date and show the IBNR claim count predictions corresponding to the next 26
weeks (resp. 12 months).
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Figure 5.10: Predictions of the IBNR claim counts by reporting date. Prediction
intervals are constructed at the 95% confidence level. The actual
IBNR claim counts are derived based on the full data set until
August 2009. In (a), we show predictions by day for reporting dates
in between September 1, 2004, and November 7, 2004. In (b), we
group the reporting dates by weeks (7 days) after the evaluation
date and show the predictions corresponding to the next 26 weeks.
In (c), we group the reporting dates by months (30 days) after the
evaluation date and show the predictions corresponding to the next
12 months.

5.4.3 Prediction of total IBNR claim counts over time

Finally, we evaluate how the model performs in estimating the total IBNR claim
count when it is refitted to a different subset of the data. In order to do so,
we adjust the evaluation date τ , which was chosen to be August 31, 2004, to
any date in between September 1, 2003, and August 31, 2004. For each such
τ , we refit the model based on the observed data by that date, NR = {Ntd |



146 IBNR claims reserving

1 6 t 6 τ, d > 0, t + d 6 τ}, and produce an estimate of the total IBNR claim
count N IBNR =

∑τ
t=1 N IBNR

t corresponding to claims that occurred before τ .
Figure 5.11 contrasts these predictions along with 95% prediction intervals to
the actual total IBNR claim counts at each evaluation date based on the full data
set. Although the model estimates follow the seasonal pattern also observed in the
actual IBNR claim counts, the predictions are often too high. One possible reason
for this is that the measure we used for the exposure to risk, namely the earned
exposure, is too crude. If a more refined exposure unit would be available, such as
the sum of the net earned premiums, these predictions might improve. Another
reason is that we assume the seasonal monthly pattern to be the same over the
different years. For the data at hand, it seems that this assumption might be too
simplistic and that the effect of the month on the occurrences of claims and on
the reporting delays changes over the years. As a result, the estimates in Figures
5.7 and 5.8 are averaged values. However, including effects of the calendar year or
interactions of months with the calendar years in both the occurrence model and
the reporting delay model is even more harmful for the predictive performance
and leads to a more severe underestimation of the total number of IBNR claims
(results not shown). This is due to the amount of missing information in the last
calendar year, see Figure 5.3. As a consequence, the extra parameters related
to the last occurrence year are used to further maximize the likelihood of the
observed claims in the upper triangle of Table 5.2 but lead to bad extrapolations
for the lower triangle. Imposing restrictions and allowing the calendar year to
be only used in either the occurrence model is a better strategy to extrapolate
the past observed patterns, but still cannot provide on-target predictions over the
entire range of evaluation dates of Figure 5.11 (results not shown). This shows
how the claim arrival process is an intrinsically hard process to model.

Possible reasons why the occurrence process of claims might change over time
include changes in product design and conditions, changes in the business environ-
ment, changes in legislation, and changes in the registration of reported claims. If
any of this is the case and corresponding expert-knowledge is available on how it
impacts the claim arrival process, then the model could be appropriately adjusted.
The regressors used in the Poisson distribution for the daily total claim counts and
the negative binomial distribution of the reporting delay in weeks could be easily
extended based on external covariate information of which the insurer believes it
affects the claim occurrence process.

A final remark related to Figure 5.11 is the increase in the total IBNR claim
count around the end of the year. Claim counts are indeed higher on New Year’s
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Figure 5.11: Predictions of the total IBNR claim counts for varying evaluation
dates τ in between September 1, 2003, and August 31, 2004. Pre-
diction intervals are constructed at the 95% confidence level. The
actual total IBNR claim counts are derived based on the full data
set until August 2009.

Eve and New Year as can be seen from Figure 5.2b. The model can incorporate
this aspect using designated dummy indicators in the regression models, but this
would not completely make the IBNR predictions at the end of the year in line
with the actual values (results not shown). This is due to the fact that the
insurance company is closed around the holidays, preventing any claims from
being reported at that time. Tackling this issue would require us to adjust the
day-specific probabilities to take the absence of reporting on holidays into account,
which is not straightforward to do under the model assumptions of Section 5.3.2.
For this reason, it is advisable not to estimate the number of IBNR claims exactly
on the first or last day of the year.

5.5 Conclusions and outlook

We propose a new technique to model the claim arrival process on a daily basis
in order to estimate the number of IBNR claim counts. The method uses regres-
sion models for count data for the occurrence of claims and their corresponding
reporting delays. The main idea introduced in this work is to treat the right
truncation of the reporting delays as a type of missing data. Applying the EM
algorithm strongly simplifies maximum likelihood estimation as it allows for the
use of standard statistical software to fit the regression models. We investigate
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the performance of our micro-level IBNR reserving method in a case study with
a European portfolio of general liability insurance policies for private individuals.
The presented model provides a better understanding of the claim arrival process
and can be used to predict IBNR claims on a daily level.

We indicate some possible directions for future research. First of all, we would
like to stress that the provided estimation framework involving the EM algorithm
can be applied to different models in this context. This provides a more desir-
able alternative over the ad hoc methods or two-step approaches used earlier in
actuarial literature. The essence of the estimation procedure described in Section
5.3.3 would remain the same.

A direct extension of the model presented in this chapter would be to introduce
a multinomial logistic regression model for the day probabilities within a reporting
week shown in Figure 5.6. Incorporating covariate information would allow us to
model possible evolutions of these reporting day probabilities over time. If say,
for instance, in more recent years claims are also being reported on Sundays
through online reporting the day-specific probabilities would be able to adapt.
This would be easily implemented because the EM algorithm relies on complete
data computations which enables using a statistical software package to fit the
multinomial logit model.

It would also be interesting to explore different distributional assumptions for
the daily total claim counts and the reporting delay distribution in weeks. The
reporting delay can be easily altered within the given framework to, for instance, a
zero-inflated or hurdle distribution or a more heavy-tailed distribution. Relaxing
the Poisson assumption for the daily total claim counts is also feasible but might
complicate the E-step in which we now relied on the thinning property of Poisson
distributions. The EM framework is however compatible with latent underlying
processes affecting the occurrence of claims such as hidden Markov models or
shot noise process (see e.g. Badescu et al., 2016a; Avanzi et al., 2016). Another
promising approach would be to investigate how time series models for counts (see
Jung and Tremayne, 2011, for an overview) could be introduced in this setting.

5.6 Appendix: Derivation of the asymptotic va-
riance-covariance matrix

Covariance matrix with respect to α The asymptotic covariance matrix
of the MLE α̂ can be estimated by the inverse of the submatrix of the observed



5.6. Appendix: Derivation of the asymptotic variance-covariance
matrix 149

information matrix related to α, evaluated at Θ = Θ̂. Using relationship (5.13)
between the incomplete data, complete data and missing information matrices,
we have that

Iα,α(Θ;NR) = − ∂2

∂α∂α′ logL(Θ;NR) = Iα,α
c (Θ;NR)− Iα,α

m (Θ;NR) .

The subvector of the complete data score statistic related to α is equal to

Sα
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∂α
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= ∂
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[
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et exp(x′

tα)xt +
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t=1
Ntxt .

The missing information matrix with respect to α can be derived using (5.14) as

Iα,α
m (Θ;NR) = Cov

[
Sα

c (Θ;N) |NR; Θ
]

= Cov
[
−

τ∑
t=1

et exp(x′
tα)xt +

τ∑
t=1

Ntxt
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]
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)
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]

=
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λtp

IBNR
t xtx

′
t , (5.16)

where we use the assumption that the daily total claim counts are independently
Poisson distributed. Furthermore, we compute

Iα,α
c (Θ;N) = − ∂2

∂α∂α′ logL(Θ;NR)

= − ∂

∂α
Sα

c (Θ;N)

=
τ∑

t=1
et exp(x′

tα)xtx
′
t , (5.17)
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which does not depend on N such that

Iα,α
c (Θ;NR) = E

[
Iα,α

c (Θ;N) |NR; Θ
]

= Iα,α
c (Θ;N) ,

and

Iα,α
c (Θ) = E [Iα,α

c (Θ;N) | Θ] = Iα,α
c (Θ;N) .

By combing (5.16) and (5.17), evaluated at Θ = Θ̂, we thus find that

Iα,α(Θ̂;NR) = Iα,α
c (Θ̂;NR)− Iα,α

m (Θ̂;NR)
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et exp(x′
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λ̂t p̂R

t xtx
′
t , (5.18)

which does not depend on the observed data NR and hence also equals Iα,α(Θ̂).
Its inverse estimates the asymptotic covariance matrix of the MLE α̂. The missing
information principle applied to the parameters of the Poisson regression model
for the daily claim occurrences has a very intuitive interpretation: the observed
information (5.18) related to the observed daily claim counts NR

t equals the com-
plete information (5.17) related to the total daily claim counts Nt minus the
missing information (5.16) related to the IBNR daily claim counts N IBNR

t .

Covariance matrix with respect to β Similarly for β, we use the relation

Iβ,β(Θ;NR) = − ∂2

∂β∂β′ logL(Θ;NR)

= Iβ,β
c (Θ;NR)− Iβ,β

m (Θ;NR) . (5.19)

The score vector associated to β is given by
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tβ − (φ + w) log(φ + exp(z′
tβ))]
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= wzt − (φ + w) exp(z′
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Its conditional covariance is the missing information matrix related to β,
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(5.20)

Moreover, we calculate
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On substituting (5.20) and (5.21) into (5.19), we then have that
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with N̂t,7w+d defined as in (5.8) using the MLE Θ̂. Its expectation with respect
to the observed data NR is given by

Iβ,β(Θ̂) = Iβ,β
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Either the inverse of Iβ,β(Θ̂;NR) or the inverse of Iβ,β(Θ̂) can be used to
estimated the asymptotic covariance matrix of the MLE α̂.



Chapter 6

Outlook

By careful analysis of the available data using proper statistical techniques, insur-
ance companies can improve the predictive power of their pricing and reserving
tools and achieve a better understanding, measurement and management of the
risks they are exposed to. We strongly believe that our proposed techniques in the
context of loss reserving, telematics insurance and claims reserving may lead to
better actuarial practices. This chapter concludes our work by presenting several
suggestions for future research related to these topics.

The developed methodology can also be applied to other areas where similar
data are collected and analyzed. The expected impact is broader than only on
actuarial science with potential applications in, for instance, econometrics (e.g. the
unemployment duration data from Section 2.5.2), geology (e.g. the Old faithful
geyser data from Section 3.5.2 and the use of compositional predictors in Chapter
4) and biostatistics (e.g. the mastitis study from Section 3.5.3 and the modeling
of reporting delays in infectious disease data using the approach for IBNR claims
reserving of Chapter 5).

6.1 Further developments in loss modeling

In Chapter 2, we develop an estimation procedure using the EM algorithm that is
able to fit a mixture of Erlang distributions to censored and truncated data. The
flexibility of mixtures of Erlang distributions and the effectiveness of the proposed
fitting algorithm is demonstrated using several simulated and real data sets. In
particular, for the left truncated Secura Re data set a mixture of two Erlang com-
ponents adequately represents the moderately heavy-tailed claim sizes. In the
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example of Section 2.5.4, we illustrate its limitations when data are generated
from a generalized Pareto distribution with extreme value index equal to one,
which expresses a very heavy tail. Because mixtures of Erlangs have asymptoti-
cally exponential tails, which are lighter, in such example there is no parsimonious
model possible using such mixtures. Erlang components in a mixture are not able
to extrapolate the heaviness in the tail and instead behave similar to an empirical
distribution in the upper tail. However, this behavior might be undesirable from
a risk measurement perspective. An accurate description of the upper tail of the
claim size distribution is important to safeguard the insurance company against
extreme losses that might jeopardize its solvency. Reynkens et al. (2016) address
this issue by considering a splicing model where a mixture of Erlang distributions
is used for the body of the distribution and a Pareto distribution for the tail. A
global fit results, which combines the flexibility of the mixture of Erlangs distribu-
tion to model light and moderate losses with the ability of the Pareto distribution
to model extreme values.

This idea can be extended to the multivariate setting from Chapter 3 in or-
der to provide a global fit strategy for heavy-tailed, dependent losses. The most
promising approach is to combine the multivariate mixtures of Erlang distribu-
tions (MME) with the multivariate generalized Pareto distribution (MGPD). The
MGPD class is proposed in Rootzén and Tajvidi (2006) and combines univariate
generalized Pareto distributions using a dependence structure to model the tail
regions where at least one component of the vector is large. In such a multivariate
splicing model, an MME would be used to represent losses below a d-dimensional
splicing point and an MGPD for losses that exceed the splicing point in at least
one dimension.

The definition of a (univariate and multivariate) mixture of Erlang distribu-
tions can readily be generalized to include a discrete point mass at zero. This
accommodates common situations in practice when one explicitly wants to model
the positive probability of a zero loss, i.e. when no loss has been incurred. The
presented EM algorithm in Chapters 2 and 3 can straightforwardly be adapted to
this extension.

The selection of shape parameters for mixtures of Erlangs is based on itera-
tively using the EM algorithm and comparing the fits based on AIC or BIC. The
algorithms used to initialize, adjust and reduce the shape parameters perform
well, but the strategy is computationally intensive and depends on the values of
the initializing parameters M and s. It would be interesting to look into alter-
native ways to approach the choice of the shapes which forms a computationally
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unsolvable optimization problem over NM . In a recent effort, Yin and Lin (2016)
propose the use of regularization techniques for univariate mixtures of Erlangs,
inspired by the MSCAD penalized likelihood of Chen and Khalili (2008). How-
ever, it still requires an initial choice for the shape set and introduces new tuning
parameters.

In future research we aim to extend the mixtures of Erlangs framework towards
the inclusion of predictor variables and introduce the flexibility of this approach
in a regression context. Our idea is to translate the covariate information into
the mixing weights of the components in the mixture of Erlang distributions.
The common scale parameter then remains the same for all observations, but the
weights in the mixture become a function of the linear predictor including the
available covariates. In the univariate setting, we suggest to model the weights
using a cumulative logit model (also called a proportional odds model). This
model is used for ordinal dependent variables, which makes it a promising avenue
in this setting since the mixing components have a natural ordering based on the
value of the corresponding shape parameter. Introducing such a model for the
mixing weights leads to solving an additional regression model in each M-step of
the EM algorithm in order to update the corresponding parameters used in the
weight specifications. In the multivariate setting, there is no natural ordering of
the shape parameter vectors and a multinomial logit model for the mixing weights
could be considered instead.

6.2 Further developments in telematics insurance

In Chapter 4, we investigate a Belgian telematics car insurance data set. The
goal is to incorporate the telematics information to make better predictions on
the number of claims and to identify the relationship between the driving habits
and the accident risk. Compositional predictors are introduced to quantify and
interpret the effect of the driving habits on the riskiness. The analysis shows
that the use of this new type of data collected through telematics technology
leads to improved predictions in actuarial pricing. Moreover, moving towards car
insurance rating based on individual driving habits and style can resolve possible
discrimination of basing the premium on proxies such as gender.

The novelty of telematics insurance calls for future research and requires an
interdisciplinary approach. From a business perspective, it would be interesting
to evaluate how the proposed prediction model using telematics variables can
impact the pricing strategies and profitability of insurance companies. The cost
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effectiveness of usage-based insurance could be assessed, taking into account the
implementation cost of black box devices and related data management. Business
models need to be designed that generate value from pay-as-you-drive insurance
for both individuals and firms.

From the perspective of actuarial science and econometrics, telematics insur-
ance is at the cross-road of a priori and a posteriori rating and demands a rethink-
ing of common practices in both activities. This opens up new possibilities for
future research on competitive adaptive pricing strategies. Premium structures
can be developed to more closely reflect the actual risk exposure and to adapt
over time based on the observed driving behavior after the underwriting of the
policy. Financial rewards along with personalized driving style feedback will give
policyholders a high incentive to drive more responsible, thus minimizing risk and
improving road safety.

From a statistics and machine learning perspective, the most exciting future
challenges lie in the analysis of telematics data on a more granular level. Telem-
atics technology offers the possibility to collect real-time driving data via the
black box device installed in a car. Insurers however partner with telematics
data providers who process the raw telematics data, enrich these using external
data sources (e.g. road maps) and deliver structured, aggregated telematics in-
formation. The daily summarized data we analyzed in Chapter 4 on how much,
where and when the vehicle is driven forms a typical data setup in which insur-
ance companies receive telematics data from such data providers. More extensive
data formats also include certain driving style scores based on speeding viola-
tions, harsh braking, excessive accelerating, and cornering style. These kind of
UBI driving scores can be easily incorporated in the presented framework.

To obtain a more comprehensive view on the driving style, it is desirable to
have the raw telematics data in the form of streams of coordinates available (which
is not the case in our setting). Statistical analysis of these spatiotemporal data is
a highly relevant direction for future research. The main difficulty is to transform
this high-frequency GPS location data into interpretable covariates describing
complex driving patterns. Basic features that can be derived from GPS data
at every time point are the speed, difference in speed, acceleration, difference
in acceleration and angular speed. It is important to also account for specific
driving contexts, such as road type, traffic situations and weather conditions.
Using techniques from unsupervised learning and pattern recognition the goal is
to classify different driving styles. In a next step, these driving style classes can be
used as risk factors in claim count regression models to evaluate the effectiveness
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of the classification in assessing the accident risk. Insurers must carefully consider
which of these sensor data-derived classifications constitute suitable rating factors
in usage-based car insurance pricing and to what extent they improve the quality
of predictions.

6.3 Further developments in claims reserving

In Chapter 5, we contribute to the micro-level loss reserving literature by formu-
lating a regression framework to model the claims arrival process along with its
reporting delays on a daily level. The model can be used to predict the num-
ber of daily future claim counts in order to set up adequate IBNR claim reserves.
The proposed methodology can be further developed and applied to multiple other
case-studies, from different lines of business. The presented estimation framework
using the EM algorithm can also be employed in alternative claims reserving mod-
els to obtain a joint estimation of both the occurrence and the reporting delay
model parameters.

Several directions exist for future research in micro-level claims reserving. The
most important path is to focus on the payment process, from reporting until
settlement of a claim. Modeling the dynamics of the individual development of
claims forms the next necessary building block to extend our micro-level loss
reserving technique and to estimate future cash flows.

Arjas (1989), Norberg (1993) and Norberg (1999) developed a mathematical,
probabilistic framework for the development of individual claims in continuous
time. More recently, Antonio and Plat (2014) make this theory accessible to
reserving practice by translating these probabilistic ideas to a statistical model in
which estimation, inference and prediction is demonstrated on a real life data set.
In their approach, hazard rates drive the time to events in the development of a
claim (e.g. a payment, or settlement) and a lognormal regression is used to model
intermediate payments corrected for inflation using a consumer price index.

Building upon the work of Antonio and Plat (2014), it would be interesting to
relax the distributional assumptions made and to incorporate claim-specific infor-
mation as covariates. Insurers’ data base systems contain detailed information on
open claims and their ongoing development: characteristics of the policy(holder),
the accident, the (initial) case estimate (i.e. an expert judgment of the final claim
amount), the reporting delay, the cumulative amount paid so far, etc. Traditional
reserving methods compress these large data sets into small run-off triangles and
hereby ignore this detailed information. Micro-level loss reserving offers the op-
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portunity to instead use these claim-specific characteristics as predictive variables.
This allows for a more realistic modeling of the development process which is ex-
pected to result in more accurate estimates and forecasts.
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Tome II: Tarification et provisionnement. Collection “Economie et statistiques
avancées”. Economica.

Denuit, M. and Lang, S. (2004). Non-life ratemaking with Bayesian GAMs.
Insurance: Mathematics and Economics, 35(3):627–647.

Denuit, M., Marechal, X., Pitrebois, S., and Walhin, J. (2007). Actuarial mod-
elling of claim counts: risk classification, credibility and bonus-malus systems.
Wiley.

Desyllas, P. and Sako, M. (2013). Profiting from business model innovation:
Evidence from pay-as-you-drive auto insurance. Research Policy, 42(1):101–116.

Dhaene, J., Tsanakas, A., Valdez, E. A., and Vanduffel, S. (2012). Optimal capital
allocation principles. Journal of Risk and Insurance, 79(1):1–28.

Dufour, R. and Maag, U. (1978). Distribution results for modified kolmogorov-
smirnov statistics for truncated or censored. Technometrics, 20(1):29–32.

Efron, B. and Tibshirani, R. (1994). An Introduction to the Bootstrap. Chapman
& Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis.
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Husnjak, S., Peraković, D., Forenbacher, I., and Mumdziev, M. (2015). Telematics
system in usage based motor insurance. Procedia Engineering, 100:816–825.

Joe, H. (1997). Multivariate models and multivariate dependence concepts, vol-
ume 73. CRC Press.

Jung, R. C. and Tremayne, A. R. (2011). Useful models for time series of counts
or simply wrong ones? AStA Advances in Statistical Analysis, 95(1):59–91.



BIBLIOGRAPHY 175

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete
observations. Journal of the American statistical association, 53(282):457–481.

Klein, J. and Moeschberger, M. (2003). Survival Analysis: Techniques for censored
and truncated data. Statistics for Biology and Health. Springer, second edition.

Klein, N., Denuit, M., Lang, S., and Kneib, T. (2014). Nonlife ratemaking and
risk management with Bayesian generalized additive models for location, scale,
and shape. Insurance: Mathematics and Economics, 55:225 – 249.

Klugman, S. and Rioux, J. (2006). Toward a unified approach to fitting loss
models. North American Actuarial Journal, 10(1):63–83.

Klugman, S. A., Panjer, H. H., and Willmot, G. E. (2012). Loss models: from
data to decisions, volume 715. Wiley.

Klugman, S. A., Panjer, H. H., and Willmot, G. E. (2013). Loss models: Further
topics. John Wiley & Sons.

Laevens, H., Deluyker, H., Schukken, Y., De Meulemeester, L., Vandermeersch,
R., De Muelenaere, E., and De Kruif, A. (1997). Influence of parity and stage
of lactation on the somatic cell count in bacteriologically negative dairy cows.
Journal of Dairy Science, 80(12):3219–3226.

Lancaster, P. and Salkauskas, K. (1986). Curve and surface fitting: An introduc-
tion. London: Academic Press.

Lawless, J. (1994). Adjustments for reporting delays and the prediction of oc-
curred but not reported events. Canadian Journal of Statistics, 22(1):15–31.

Lee, D., Li, W. K., and Wong, T. S. T. (2012). Modeling insurance claims via
a mixture exponential model combined with peaks-over-threshold approach.
Insurance: Mathematics and Economics, 51(3):538 – 550.

Lee, G. and Scott, C. (2012). EM algorithms for multivariate Gaussian mixture
models with truncated and censored data. Computational Statistics & Data
Analysis, 56(9):2816 – 2829.

Lee, S. and McLachlan, G. J. (2014). Finite mixtures of multivariate skew
t-distributions: some recent and new results. Statistics and Computing,
24(2):181–202.



176 BIBLIOGRAPHY

Lee, S. C. and Lin, X. S. (2010). Modeling and evaluating insurance losses via mix-
tures of Erlang distributions. North American Actuarial Journal, 14(1):107–130.

Lee, S. C. and Lin, X. S. (2012). Modeling dependent risks with multivariate
Erlang mixtures. ASTIN Bulletin, 42(1):153–180.

Lemaire, J. (1995). Bonus–malus systems in automobile insurance. Springer–
Verlag, New York.

Lemaire, J., Park, S. C., and Wang, K. C. (2016). The use of annual mileage as
a rating variable. ASTIN Bulletin, 46:39–69.

Leung, K.-M., Elashoff, R. M., and Afifi, A. A. (1997). Censoring issues in survival
analysis. Annual review of public health, 18(1):83–104.

Li, Y., Gillespie, B. W., Shedden, K., and Gillespie, J. A. (2015). Calculating
profile likelihood estimates of the correlation coefficient in the presence of left,
right or interval censoring and missing data. Working paper.

Lin, T. I. (2009). Maximum likelihood estimation for multivariate skew normal
mixture models. Journal of Multivariate Analysis, 100(2):257 – 265.

Litman, T. (2011). Distance-based vehicle insurance feasibility, costs and benefits.
Victoria Transport Policy Institute. http://www.vtpi.org/dbvi_com.pdf.

Litman, T. (2015). Pay-As-You-Drive Vehicle Insurance: Converting Vehicle In-
surance Premiums Into Use-Based Charges. Victoria Transport Policy Institute.
http://www.vtpi.org/tdm/tdm79.htm.

Louis, T. A. (1982). Finding the observed information matrix when using the EM
algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
44(2):226–233.

Mack, T. (1993). Distribution-free calculation of the standard error of chain ladder
reserve estimates. Astin bulletin, 23(02):213–225.

Mailhot, M. (2012). Mesures de risque et dépendance. PhD thesis, Université
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daily IBNR claim counts using a regression approach for the occurrence of
claims and their reporting delay. Working paper.

Verbelen, R., Gong, L., Antonio, K., Badescu, A., and Lin, X. S. (2015). Fitting
mixtures of Erlangs to censored and truncated data using the EM algorithm.
ASTIN Bulletin, 45(3):729–758.
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