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Abstract

Copyright © 2019 European Journal of Operational Research. This paper considers the
problem of predicting the number of events that have occurred in the past, but which are
not yet observed due to a delay. Such delayed events are relevant in predicting the future
cost of warranties, pricing maintenance contracts, determining the number of unreported
claims in insurance and in modeling the outbreak of diseases. Disregarding these unobserved
events results in a systematic underestimation of the event occurrence process. Our approach
puts emphasis on modeling the time between the occurrence and observation of the event,
the so-called observation delay. We propose a granular model for the heterogeneity in this
observation delay based on the occurrence day of the event and on calendar day effects in
the observation process, such as weekday and holiday effects. We illustrate this approach
on a European general liability insurance data set where the occurrence of an accident is
reported to the insurer with delay.

Keywords: Risk management; Occurrence of events; Observation delay; Calendar day effects;
Data analytics.

1 Introduction

In many domains within operational research analysts are interested in building a stochastic
model for the occurrence of events. However, the events of interest are often observed or reported
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1 Introduction 2

with some delay. Analysts should account for these unobserved events since ignoring them will
bias the decisions based on the stochastic model under consideration. Figure 1 visualizes this
setting. We specify a well defined observation window (on the x-axis) in which we observe
the creation of new objects (e.g. products or contracts). Over the course of their lifetimes some
objects may experience the event of interest (object 1 and 2 in Figure 1) before a given evaluation
date, and others will not (object 3 and 4 in Figure 1). Upon occurrence the event is initially
hidden from the decision maker. The time that elapses between the onset of the object’s lifetime
and the occurrence of the event is called the event delay. Only after a so-called observation
or reporting delay the decision maker becomes aware of the existence of the event. This paper
outlines a data driven strategy to predict the number of events that occurred in the past (before
the evaluation date), but which are hidden at the time of evaluation and will only be observed
or reported in the future. Subject 2 in Figure 1 is an example of such an event.

Time since start

Observation window Future

Start

1

Hidden
event

Observed
event

Even
t delay

Observ
atio

n delay

2 3 4

Evaluation date

Figure 1: Occurrence and observation of events

The modeling of the time to occurrence of an event (‘the event delay’), the number of (hidden)
events that occurred during a specific time window and the delay between occurrence and obser-
vation (‘the observation delay’) have been active research areas in the literature on operational
research, actuarial science and epidemiology. Typical examples of applications where this pre-
dictive problem matters are: a portfolio of maintenance, warranty or insurance contracts, but
also an outbreak of a specific disease fits within this framework. We highlight some relevant
contributions and explain how this paper extends the existing literature.

A warranty contract requires the manufacturer to compensate the buyer for all failures occurring
within the warranty period. Manufacturers hold capital for future compensations related to
goods produced in the past. The amount of capital required depends on the number of defective
products that have been sold. Accurate estimation of this number is complicated due to the
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incompleteness of the data. The diagonal time line in Figure 1 begins when a defective product
is produced. However, the warranty period only starts when the product is sold to a customer.
Manufacturers are typically not aware of these sales and we consider them as a hidden events.
Once the defect emerges and the customer calls his warranty contract, the manufacturer is
informed of the sale (‘the observed event’). Akbarov and Wu (2012) and Ye and Ng (2014)
simultaneously model the time to sale and the delay between sale and failure of the product
using parametric methods. Since both processes interact in the likelihood, estimation is difficult.
Akbarov and Wu (2012) resolve to numerical maximization, whereas Ye and Ng (2014) use a
Stochastic Expectation Maximization strategy. While these authors model the time to sale with
a simple, parametric distribution without covariates, our framework accounts for the seasonal
effects, promotions holidays and weather effects typically present in sales data.

Epidemiologists face a similar statistical problem when modeling the evolution of diseases (Har-
ris, 1990; Salmon et al., 2015). In this setting, subjects are followed over time and a recent
disease infection may remain unobserved due to either delay in disease diagnosis by a medical
doctor or incubation time. Modeling these delays allows to take the yet unobserved infections
(‘the hidden events’) into account and thus enables a faster and more accurate identification of
disease outbreaks and epidemics (Noufaily et al., 2016).

Maintenance contracts are typically sold together with large industrial appliances. Under these
contracts the manufacturer or a third party guarantees the continued use of the equipment. A
machine failure (‘the observed event’) is often the result of previous defects (‘the hidden event’)
which remained unobserved. These defects can be detected by on site inspections and timely
repairs will prevent expensive failures or breakdowns of the machine. However, the profitability
of these inspections depends largely on the number of hidden defects. Observation delay was
first modelled in the context of maintenance contracts by Christer (1973), where it is called
delay-time. Since then several papers have focussed on the delay-time concept. Baler and Wang
(1993) model delay-time from observed failure data using maximum likelihood estimation. In
this approach both the time to defect as well as the time to observation of the machine failure
are tackled with parametric distributions. This literature typically assumes a constant intensity
for the occurrences of defects and ignores heterogeneity in the delay-time distribution. Wang
(1997) and Apeland and Scarf (2003) rely on expert opinions to formulate a fully subjective
delay-time model. Wang (2010) and Berrade et al. (2018) focus on economic decision making
when the delay-time distribution is known. In line with the current era of big data analytics
(see Mortenson et al. (2015)), our approach goes beyond these assumptions and proposes a data
driven strategy to capture heterogeneity in both the occurrence of defects as well as in the delay
between a defect and its observation.

The case-study presented in this paper illustrates our data driven approach with an insurance
data set where contracts are sold to policyholders. Some policyholders will be involved in an
accident or other type of insured event, while others will not. In insurance parlance the delay
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between the occurrence (‘the hidden event’) of an accident and the reporting or filing of the
claim to the insurance company (‘the observed event’) is called the reporting delay. These delays
are strongly portfolio dependent and can be substantial when the insured does not immediately
notice the damage. In the remainder of the paper we only consider accidents that will eventually
be reported. Accidents that are never reported do not get reimbursed and are not relevant for
the balance sheet of the insurer. Once the claim is reported and accepted by the insurer, the
insurer reimburses the loss with a single payment or a series of payments. Insurance companies
book a reserve to be able to settle the claims that are Incurred But Not yet Reported (IBNR) and
refer to this capital as the IBNR reserve. Estimating the number of claims from past exposures
that will be reported beyond the evaluation date (the so-called IBNR claim counts) is crucial
in setting this reserve. Motivated by computational constraints from the past, many estimation
methods in insurance structure the data from Figure 1 in a two dimensional table that aggregates
the number of accidents by their year of occurrence and year of reporting. We refer the reader
to Taylor (2000); Wüthrich and Merz (2008); Wüthrich and Merz (2015) for more details on
reserving with aggregate methods. Relatively few papers address the problem of specifying a
model at granular level for the phenomenon sketched in Figure 1. Badescu et al. (2016) and
Avanzi et al. (2016) focus on modeling the accident arrival process at a weekly level using Cox
processes. These models allow to capture over-dispersion and serial dependence, which is often
encountered in such occurrence data. The assumption of independence between the occurrence
date and the reporting delay is a disadvantage of the models presented in Badescu et al. (2016)
and Avanzi et al. (2016). Verrall and Wüthrich (2016) were the first to present a model for IBNR
counts at a daily level, including the heterogeneity in reporting delays based on the occurrence
date of the claim and the strong weekday pattern leading to less claims being reported during
the weekend. This weekday pattern relates to calendar day effects in the reporting process which
are difficult to model using classical techniques designed for aggregated data (see Kuang et al.
(2008)). Verrall and Wüthrich (2016) provide a method to incorporate this weekday pattern for
reporting delays of less than one week. Verbelen et al. (2017) extend this weekday pattern to
reporting delays beyond the first week by separately estimating weekly and intra week reporting
probabilities. Moreover, Verbelen et al. (2017) present the Expectation Maximization algorithm
as a framework for jointly estimating the occurrence and reporting process.

Our paper models the occurrence of hidden events non-parametrically. This allows to capture
fluctuations in occurrence counts (for example due to seasonality or weather conditions) without
explicitly modeling these events. Moreover, extending the work of Verrall and Wüthrich (2016)
and Verbelen et al. (2017) we model the observation delay in the presence of multiple covari-
ates, including calendar day effects. Examples of such calendar day effects are: a reduction in
observed events during the weekend, the effect of national holidays and seasonality in obser-
vation delay. Our strategy introduces the concept of observation exposure as an intuitive and
flexible framework for incorporating (multiple) calendar day effects through regression. This
approach elegantly transforms the observation delay distribution by scaling the probability of
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observing an event on a certain date based on covariates. As such, the transformed observation
delay distribution becomes independent of these covariates and is then modelled with a simple,
parametric distribution. This makes our approach suitable to a wide range of problems.

This paper is organized as follows. Section 2 describes a statistical framework for modeling
the number of hidden events subject to an observation delay. In Section 3 we illustrate this
approach in a case-study involving an insurance data set. We also investigates the performance
of our model in four simulated scenarios. The online appendix provides detailed expressions for
implementing the model and links our approach to the non-parametric Kaplan-Meier estimator
(Kaplan and Meier, 1958).

2 A granular model for the occurrence of events subject to delay

Denote by Nt the number of events occurring on date t, where t = 1 is the date of the first
event. These events remain hidden until their observation at date s after a delay s− t. Let Nt,s

be the number of events that occurred on date t and are observed on date s. Since all events
will be observed at some point in the future, we find

Nt =
∑
s>t

Nt,s.

Consider an evaluation date τ at which we have to predict the number of hidden events. At τ
we split the events from a past occurrence date t into observed (s 6 τ) and hidden events which
are not yet observed (s > τ), respectively denoted by

NObs
t (τ) =

τ∑
s=t

Nt,s and NHidden
t (τ) =

∞∑
s=τ+1

Nt,s for t 6 τ.

We obtain the total number of hidden events by aggregating the unobserved events from all past
occurrence dates, i.e.

NHidden(τ) =
τ∑
t=1

NHidden
t (τ) =

τ∑
t=1

∞∑
s=τ+1

Nt,s.

This total count is the number that we want to predict. Following Jewell (1990) and Norberg
(1993), we formulate two distributional assumptions from which the number of hidden events
can be predicted:

(A1) The event occurrence process (Nt)t>1 follows an inhomogeneous Poisson distribution with
intensity (λt)t>1.

(A2) The observation delay is independent and identically distributed for events occurring on
the same date.
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Denote by pt,s the probability of observing an event from occurrence date t on date s. We use
the notation pObs

t (τ) for the probability that an event from date t is observed by the evaluation
date τ . This probability is

pObs
t (τ) =

τ∑
s=t

pt,s.

By assumption (A1) and (A2) the conditions for the Poisson thinning property (Kingman, 1993)
are satisfied. The thinning property implies that all Nt,s are independent and

Nt,s ∼ Poisson(λt · pt,s). (1)

This allows us to construct the likelihood for the observed data at time τ . Let χ denote the
available data, consisting of all events that are observed on the evaluation date τ

χ = {Nt,s | t 6 s 6 τ}.

The loglikelihood of the observed data is

`(λ,p;χ) =
τ∑
t=1

τ∑
s=t

[
Nt,s · log(λt) +Nt,s · log(pt,s)− λt · pt,s − log(Nt,s!)

]
(2)

where λ is a vector with components λt for observed occurrence dates t and p = {pt,s | t 6 s 6

τ}. This paper puts focus on the observation process without imposing any structure on λt. A
straightforward computation shows that the loglikelihood in (2) is maximal for

λt =
∑τ
s=tNt,s∑τ
s=t pt,s

= NObs
t (τ)
pObs
t (τ)

. (3)

Replacing λt by this expression the loglikelihood in (2) becomes

`(p;χ) =
τ∑
t=1

τ∑
s=t

Nt,s · log(pt,s)−
τ∑
t=1

NObs
t (τ) · log(pObs

t (τ)) + constants. (4)

Up to constants this is the loglikelihood for a right truncated observation delay random variable.
The truncation point is τ − t, which is the maximal observed delay for an event that occurred
on date t.

2.1 A time change strategy to model observation delay

We are interested in structuring the observation probabilities pt,s based on covariates corre-
sponding to the occurrence date t and the reporting date s of the event. The probabilistic
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nature of the data enforces the constraints

pt,s > 0, ∀t, s and
∑
s>t

pt,s = 1, ∀t. (5)

The proposed time change strategy transforms the reporting probabilities such that they can
be linked with covariates while preserving these constraints. This transformation is depicted in
Figure 2, where we consider an event that occurred on a Thursday and for which observation is
less likely during the weekend.

First, we view the discrete observation delay as a realization of a continuous random variable
Ut under interval censoring. This is graphically illustrated in Figure 2a (discrete setting) and
2b (continuous setting). Second, we define a time change operator ϕt which assigns a positive
length αt,s, called the observation exposure, to each combination of an occurrence date t and
an observation date s. This time change operator is similar to the concept of operational time,
which is a common technique in continuous financial mathematics, see Swishchuk (2016). We
perceive dates as having variable lengths, whereas prior to this time change an equal length of
one time unit was attached to each date. The probability of observing an event on a certain
date is scaled by the duration of this date, which motivates calling this length the observation
exposure. We define the time-changed delay ϕt(d) for an event with occurrence date t and an
observation delay of d days as

ϕt(0) = 0 and ϕt(d) =
d∑
i=1

αt,t+i−1, d ∈ N \ {0}. (6)

This is the sum of all observation exposures αt,s assigned to dates in between the occurrence
date t and date t+d−1. By applying ϕt on the observation delay random variable Ut we obtain
a time-changed random variable Ũ := ϕt(Ut) which is independent of the occurrence date t of
the event. The discrete observation probabilities are easily extracted from this distribution using
the relation

pt,s = P (Ut ∈ [s− t, s− t+ 1)) (7)

= FŨ

(
s−t+1∑
i=1

αt,t+i−1

)
− FŨ

(
s−t∑
i=1

αt,t+i−1

)
.

Under the time change transformation the constraints (5) become

αt,s > 0, ∀t, s and
∑
s>t

αt,s =∞, ∀t.

We specify a regression model for the daily observation exposure as a function of covariates. We
set

log(αt,s) = x
′
t,s · γ,
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(a) discrete
αthu,0

s− t
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pt,s

(b) continuous
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Figure 2: Observation delay distribution for an event that occurred on a Thursday. We illustrate (a)
the discrete observation delay probabilities pt,s, (b) the density of the continuous observation
delay distribution Ut and (c) the density of the time-changed observation delay distribution
Ũ .

for a vector xt,s of covariates related to observing on date s an event that occurred on date t
and the corresponding parameter vector γ. In contrast with classical regression methods, the
reporting probabilities pt,s not only depend on the characteristics of the observation date, but
instead take the full history between the event occurrence and observation date into account
through the time change strategy.

Figure 2c illustrates this time change. Since less claims get reported during the weekend, we
model observation exposure as a function of the reporting day of the week. The time change
then assigns lower observation exposures to Saturday and Sunday, hereby transforming the
continuous distribution from Figure 2b into a time-changed distribution that can be modeled
using standard loss distributions.

2.2 Calibration

Our approach divides the observation delay model into two components. The time change
transformation ϕt defined in (6) captures the heterogeneity in the observation process. This
transformation is expressed by the daily observation exposures, which require the calibration
of the regression parameters γ. The time transformed observation delay Ũ is modeled with a
simple parametric probability distribution, where the data will assist us in choosing the best
candidate. We optimize the loglikelihood in (4) with respect to γ, i.e. we maximize

`(γ;χ) =
τ∑
t=1

τ∑
s=t

Nt,s · log
[
FŨ

(
s∑
v=t

αt,v

)
− FŨ

(
s−1∑
v=t

αt,v

)]

−
τ∑
t=1

NR
t (τ) · log

[
FŨ

(
τ∑
v=t

αt,v

)]
,
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with αt,v = exp
(
x
′
t,v · γ

)
. Online appendix A describes an optimization strategy for this loglike-

lihood that is applicable to any sufficiently smooth distribution FŨ ( · ). The described strategy is
generic and does not immediately take properties from the chosen distribution into account. Sig-
nificant reductions in computation time can be obtained when Ũ follows a standard exponential
distribution. The loglikelihood then becomes

`(γ;χ) = −
τ∑
t=1

τ∑
s=t

Nt,s ·
(
s−1∑
v=t

αt,v − log (1− exp (−αt,s))
)

(8)

−
τ∑
t=1

NR
t (τ) · log

(
1− exp

(
−

τ∑
v=t

αt,v

))
.

The first line in (8) is a sum in which each term depends on a single observation exposure, αt,s.
Since this facilitates computing first and second order derivatives with respect to the reporting
exposure, this results in a lower computation time.

2.3 Predicting the number of hidden events

At the evaluation date τ we predict the number of events from past occurrence dates t that will
be observed on future dates s. Hence our focus is on

Nt,s, for t 6 τ and s > τ.

We aggregate these future daily observation counts to find the total number of hidden events

NHidden(τ) =
τ∑
t=1

NHidden
t (τ) =

τ∑
t=1

∞∑
s=τ+1

Nt,s.

Following the Poisson assumption in (1) each random variable Nt,s is independently Poisson
distributed with mean

E(Nt,s) = λt · pt,s.

The observation delay model developed in Section 2.1 provides estimates for the observation
probabilities pt,s, see (7)

p̂t,s = P (Ũ ∈ [ϕt(s− t), ϕt(s− t+ 1)) | γ̂).

In (3) we proposed a pragmatic, non-parametric estimator for the claim occurrence intensity on
date t, namely

λ̂t = NObs
t (τ)
p̂Obs
t (τ)

. (9)

This estimator depends only on the observed events and the estimated observation delay dis-
tribution. This is an advantage when the event generating process is volatile. For dates with
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unexpectedly many events the number of observations will be higher and thus we correctly pre-
dict more event occurrences. On the downside, (9) is less reliable for recent dates when the
denominator is close to zero or when the number of daily events is low. When the data set is
small, the non-parametric estimator can be replaced by a parametric estimator following the
strategy outlined in Bonetti et al. (2016) and Verbelen et al. (2017). In a parametric framework
the estimator for the occurrence intensity may include the daily risk exposure, expressed as
the number of policies in effect on a day. Including risk exposure increases the robustness of
parametric models to evolutions in the portfolio size and may potentially improve the predictive
performance of the model.

3 Case-study: reporting delay dynamics in insurance

3.1 Data characteristics

We illustrate our approach with the analysis of a liability insurance data set from the Nether-
lands. The same data is studied in Pigeon et al. (2013), Pigeon et al. (2014) and Godecharle
and Antonio (2015) with focus on calculating reserves in discrete time, Antonio and Plat (2014)
model reserves in continuous time and Verbelen et al. (2017) who propose a model for the
number of hidden claim counts at a daily level. The data registers 506 235 claims related to
insured events that occurred and were reported between July, 1996 and August, 2009. From
these claims, we remove 75 observations with a reporting date prior to the accident date and
559 claims that are the result of transitions in the reporting system. We focus on the occurrence
date of accidents and the corresponding reporting delay in days, i.e. the time (in days) between
occurrence of the accident and reporting or filing of the claim to the insurer. To avoid losing
valuable insights by aggregation, we study the data at a daily level. This is the most granular
timescale at which the data is available.

Occurred accidents Figure 3 shows the daily number of accidents that occurred between
July, 1996 and August, 2009 and initiated a claim reported to the insurance company before
August 31, 2009. Since only claims reported before August 31, 2009 are observed, we see a
decrease in observed event counts for the most recent dates which have a substantial number of
unreported claims. Two outliers are not shown in this plot, namely 456 accidents on October
27, 2002 and 818 accidents on January 18, 2007. Both outliers correspond to a storm in the
Netherlands causing many insured events.1 The red line in this figure shows the moving average
of the number of occurrences, calculated over the latest 30 days. This trend reveals a seasonal
pattern in the occurrence process with more events occurring during the summer months. The

1Details (in Dutch) about the storms by the royal national meteorological institute of the Netherlands (KNMI):
https://knmi.nl/over-het-knmi/nieuws/storm-van-27-oktober-2002-was-zwaarste-in-twaalf-jaar and
https://knmi.nl/over-het-knmi/nieuws/de-zware-storm-kyrill-van-18-januari-2007

https://knmi.nl/over-het-knmi/nieuws/storm-van-27-oktober-2002-was-zwaarste-in-twaalf-jaar
https://knmi.nl/over-het-knmi/nieuws/de-zware-storm-kyrill-van-18-januari-2007
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trend slightly increases over time due to an increase in portfolio size. Several of the outlying
observations in Figure 3 correspond to occurrences on the first of January as indicated by the
vertical gray bars at the beginning of each year.
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Figure 3: Daily number of accidents that occurred between July, 1996 and August, 2009 and were
reported before August, 2009. The solid line shows the moving average of occurred accidents,
calculated over the latest 30 dates. Two outliers are not shown on the graph: October 27,
2002 (456 accidents) and January 18, 2007 (818 accidents).

Reported claims Figure 4 shows the daily number of claims reported between July 1996 and
August 2009. Again the red line shows the moving average of the number of reported claims,
calculated over the latest 30 days. The seasonality in event counts observed in Figure 3 leads
to a similar seasonal pattern in reported claim counts, though with a slight lag due to the delay
in reporting a claim. Figure 4 reveals two regimes of reporting. On most dates many claims
get reported, but there is a substantial number of dates on which few or almost no claims are
reported. These dates with few reports correspond to the weekend (Saturday, Sunday) and
national holidays.2 This separation in two regimes is not the case for the occurrence process,
since accidents continue to occur during the weekend and on holidays. We further illustrate these
calendar day effects, where reporting is substantially reduced on specific dates, in Figure 5. The
left hand side lists the average number of reported claims between July, 1996 and August, 2009
on ten national holidays during which all businesses are closed. These averages are compared
with the overall daily average of reported claim counts over the observation period. This shows
that reporting is strongly reduced on national holidays. We include two non-official holidays,
New Year’s Eve and Good Friday. These dates show a slight reduction in reporting because many
people take a day off from work. The reporting behavior on weekdays is shown in Figure 5b.
During the weekend and especially on Sunday the number of reports is reduced. These calendar
day effects motivate a model for IBNR claim counts at a daily level, capable of incorporating
the weekday and holiday effect observed in our empirical analysis.

2List of national holidays in the Netherlands: http://www.officeholidays.com/countries/netherlands/

http://www.officeholidays.com/countries/netherlands/
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Figure 4: Daily number of claims that were reported on each date between July, 1996 and August,
2009. The solid line shows the moving average of reported claims, calculated over the latest
30 dates.
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Figure 5: Average number of reported claims on (a) national holidays and (b) weekdays, calculated
over all claims that occurred and were reported between July, 1996 and August, 2009.

Reporting delay Figure 6 illustrates the empirical reporting delay distribution in days over
the first three weeks after the occurrence of the insured event. The empirical probability of
reporting peaks the day after the claim occurred and strongly decreases afterwards. The increase
in reporting after exactly fourteen days is most likely a consequence of data quality issues, where
insureds who no longer recall the exact occurrence date report that the accident happened two
weeks ago. The same effect to a lesser degree is visible after exactly one week. Figure 6b and
Figure 6c show the empirical reporting delay distribution constructed using only accidents that
occurred on Monday and Thursday, respectively. This reveals the effect of the occurrence’s
day of the week on the reporting delay distribution. An accident that happened on a Monday
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Figure 6: Empirical reporting delay distribution in days over the first three weeks after the occurrence
of the claim using (a) all claims, (b) claims that occurred on a Monday and (c) claims that
occurred on a Thursday.

has a decreased probability of reporting after six or seven days, since these delays correspond
to Saturday and Sunday, respectively. Accidents that occurred on a Thursday show the same
pattern of reporting delay, but the weekend then corresponds to a different delay. The effect of
the weekend is no longer visible in the empirical distribution using all claims (Figure 6a), since
the weekend then no longer corresponds to a specific reporting delay.

The number of hidden events The evaluation date refers to the date on which the insurer
computes the reserve. In practice this date is often the last day of a quarter or the financial
year. Figure 7 uses a rolling evaluation date to illustrate the daily number of IBNR claims.
For each evaluation date we show the number of claims corresponding to insured events that
occurred before this date but were reported afterwards (and before August 31, 2009, the last
day of our observation period). The top panel of Figure 7 shows the daily number of IBNR
claims on each evaluation date between September 1, 2003 and August 31, 2004. The number
of unreported claims varies throughout the year with more unreported claims in the summer,
when more accidents occur. IBNR counts peak around the start of the new year since many
accidents occur on the first of January and reporting is slow due to a clustering of holidays.
The bottom panel of Figure 7 zooms in on the unreported claims between October 1, 2003 and
November 30, 2003. Large fluctuations in unreported claims appear when we evaluate IBNR on
a daily basis. These movements follow a seven day pattern where five days of decrease in IBNR
are followed by two days of strong upward movement. These upward moves correspond to the
weekend when many new insured events occur, but almost no events get reported.

3.2 Model specification

We opt for computational efficiency and model the time-changed reporting delay Ũ with an
exponential distribution. The reporting exposures include six effects and are structured as

αt,s = αocc. dom
t · αocc. month

t · αrep. holiday
s · αrep. month

s · αrep. dow, first week
s,s−t · αdelay

s−t (10)

= exp
(
(xocc. dom

t )′ · γocc. dom + (xocc. month
t )′ · γocc. month
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Figure 7: Number of unreported claims at each evaluation date between September 2003 and August
2004. These are the number of claims that occurred before this date, but were reported
afterwards (but before the end of the observation period, i.e. August 31, 2009). The bottom
panel zooms in on evaluation dates in October and November, 2003.

= exp( + (xrep. holiday
s )′ · γrep. holiday + (xrep. month

s )′ · γrep. month

= exp( + (xrep. dow, first week
s,s−t )′ · γrep. dow, first week + (xdelay

s−t )′ · γdelay
)
.

We model the impact of the occurrence date on the reporting delay by incorporating effects for
the day of the month αocc. dom

t and the month αocc. month
t on which the accident occurs. The

holiday effect in Figure 5a is modeled by αrep. holiday
s , which distinguishes between national and

unofficial holidays. Seasonal variations in reporting are captured by α
rep. month
s , which scales

reporting exposure based on the month in which the claim is reported. An interaction effect
α

rep. dow, first week
s,s−t estimates the reporting exposure for combinations of a reporting delay in

the first week (s − t = 0, 1, . . . , 6) and the day of the week on which the claim is reported.
Separate weekday parameters are estimated for delays of more than one week, s − t > 7. As
such, we capture the weekday effect from Figure 5a with additional flexibility in the first week
after the claim occurs. Finally, αdelay

s−t partitions the time elapsed since the accident occurred in
23 bins according to the strategy specified in online Appendix C. These bins adapt the tail of
the distribution as well as increase the probability of reporting after 14, 30 and 365 days.

3.3 Results

3.3.1 Parameter estimates

We estimate the model parameters by maximizing the loglikelihood in (8) using 8 years of
data i.e. all accidents that occurred and were reported between July 1, 1996 and September 5,
2004. The resulting training data set contains 274 187 reported claims, for which we model the
reporting process using 125 parameters. Figure 8 shows the maximum likelihood estimates for
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Figure 8: Maximum likelihood estimates with 95%-confidence intervals for the reporting exposure pa-
rameters exp(γ) in (10).

the reporting exposure parameters exp(γ) in (10). Together with these point estimates we plot
95%-confidence intervals derived from the Fisher information matrix for γ.

Occurrence day of month Figure 8a shows the effect of the day of the month on which the
accident occurred. Reporting exposure is lower for accidents that occur on the first or fifteenth
of the month, which implies that accidents from these days have a longer reporting delay. This
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is most likely the result of data quality issues. Insureds who report a claim with a long reporting
delay might no longer remember the exact occurrence date of the corresponding accident, which
leads them to register the occurrence date at the start (first) or middle (fifteenth) of the month.
This creates an increase in the average reporting delay for events that occurred on the first and
fifteenth of the month. The same effect to a lesser degree is visible on the 5th, 10th, 20th, 25th
and 30th of the month.

Month Two month effects are included in the reporting exposure structure. Figure 8b shows
the effect for exp(γocc. month) which considers the month in which the accident occurs. These
parameters indicate that reporting is slower for accidents that occurred around the beginning of
the year (January, February) and faster in the summer. Figure 8d visualizes the parameters for
the reporting month, exp(γrep. month). We observe a reduction in reporting exposure during the
summer months. Slightly counterintuitive, we find that the parameters γocc. month and γrep. month

largely offset each other for accidents that occur and get reported in the same calendar month.
When combining these effects, the reduction in reporting exposure during the summer is mostly
noticeable for claims that occurred before the summer months.

Holiday Figure 8c shows the effect of holidays on reporting exposure. Hardly any claim
gets reported on national holidays and the reporting probability is reduced by more than 50%
on unofficial holidays (Good Friday and New Year’s Eve). These estimates are of the same
magnitude as the effects found in the empirical analysis in Figure 5.

Reporting day of the week We include the day of the week effect in the reporting exposure
specification (10) through an interaction between the time elapsed after the accident occurred
s − t and the day of the week on which the claim is reported. Figure 8e shows a grouping of
the estimated coefficients based on the time elapsed since the occurrence of the accident. For
all delays we notice a reduction in reporting exposure during the weekend, with few reports
on Saturday and almost no reports on Sunday. This interaction is important as the estimated
parameters differ strongly based on the delay considered. For example, accidents that occur on
Friday or Saturday are often reported on the next Monday, which corresponds to a delay of two
and three days respectively. Since Monday is the reference level, the fitted parameters for other
weekdays are lower at these delays. The right most panel in Figure 8e shows the effect of the
reporting day of the week for delays beyond one week. For these longer delays, all working days
(Mon - Fri) have a similar reporting exposure.

Delay Figure 8f shows the evolution of the reporting exposure component exp(γdelay) in (10)
as a function of the time elapsed since the accident occurred. This effect scales the reporting
probability at specific delays such that the time-changed reporting delay Ũ better resembles
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an exponential distribution. We identified 23 bins upfront based on the strategy of online
appendix C. The first eight days after occurrence end up in separate bins. These short delays
are important, since many claims get reported soon after their occurrence date. Moreover,
Figure 8f shows that the calibrated effect changes strongly for these delays. The model also
contains bins to capture the increase in reporting probability for delays of exactly 14, 21 and 31
days as well as for reporting after one year. The bin size widens when reporting delay increases.
The final two bins [158, 364] and [370,∞) let the model capture the tail of the distribution.

3.4 Out-of-time predictions

We predict the number of hidden events, i.e. the IBNR claim count, following the strategy
outlined in Section 2.3. Because the non-parametric occurrence estimators are unreliable for
recent event dates for which few events are observed, we propose a pragmatic approach to get
around this drawbacks. Insurance companies use very specific evaluation dates when calculating
reserves, such as the end of a quarter, semester or financial year. Typically the calculations
are not performed at those exact evaluation dates, but a couple of days later (at the so-called
computation date). Accordingly we predict the number of hidden events on August 31, 2004
using data until September 5, 2004. As such, the granular model predicts 2012.7 unreported
claims on August 31, 2004, whereas the true number of IBNR claims (based on data until August
31, 2009) was 2049.

Future observation of hidden events Our daily model splits the total IBNR point estimate
of 2012.7 claims by future reporting date. Figure 9a shows the estimated number of daily
reported claims in September and October, 2004 for accidents that occurred before August 31,
2004. The dashed line in Figure 9a indicates the computation date. We do not make predictions
for dates falling before the computation date as this data is observed. The model accurately
predicts the low report counts during the weekend. This is the merit of adding the day of the
week effect in the reporting exposure model. Also the overall reporting pattern closely matches
the observed values. Figure 9b aggregates these daily report counts by month. This figure shows
the estimated number of reported claims in the first twelve months following August, 2004. In
these months the observed and predicted IBNR counts are very similar.

Evolution of the number of hidden events The primary focus of our granular model is
estimating the total IBNR count. The top panel of Figure 10 plots the predicted number of
unreported claims on each evaluation date between September, 2003 and August, 2004. Each
point estimate is an out-of-time IBNR estimate obtained from the granular model calibrated
on the historical data available five days after the corresponding evaluation date. We compare
these estimates with the actual number of IBNR claims computed from the data until August
31, 2009. Our model recognizes the trend in IBNR counts with more unreported claims during
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Figure 9: Out-of-time prediction of the number of reported claims for accidents that occurred before
August 31, 2004. These predictions are compared with the actual number of reported claims.
(a) Estimated at a daily level for the next two months. The dashed line indicates the last
observed date (September 5, 2014). (b) Estimates aggregated by reporting month for the
next twelve months.

the summer compared to the winter months. The model also correctly predicts an increase in
IBNR claims at the start of the year (here: January 1, 2004) as a result of the holidays in this
period. The middle panel of Figure 10 shows the prediction error, i.e. the difference between the
predicted number of IBNR claims and the actual count. The prediction error for the granular
model is centred around zero and there are no large outliers. The bottom panel of Figure 10
zooms in on the estimates for dates in October and November, 2003. This figure shows that
the day of the week parameters allow the model to accurately capture the weekday pattern in
IBNR counts.

Benchmark with a model for aggregate data We benchmark our granular approach to
Mack’s chain ladder method Mack (1993) on aggregated data, which is the industry standard
in claims reserving. This method discretizes time and aggregates the observed events into a two
dimensional table based on the occurrence period and the discretized reporting delay. A Poisson
generalized linear model (GLM) then models the effect of the occurrence and reporting period on
these aggregated records. We investigate two aggregation levels, namely aggregating based on
a yearly as well as a 28 day grid. We refer to Huang et al. (2015) for a more detailed discussion
on reserving with granular data versus data aggregated in two dimensional tables. Figure 11
shows the estimated IBNR counts under both chain ladder implementations evaluated on each
date between September, 2003 and August, 2004. Both versions of the chain ladder detect the
seasonal pattern in unreported claim counts, which is related to seasonality in the occurrence
process. The end of the year holidays and corresponding increase in IBNR counts is a yearly
seasonal effect in the reporting process. The chain ladder assumptions allow for seasonal effects
when the period of seasonality coincides with the discretized time periods. For this reason, the
yearly chain ladder method correctly predicts an increase in IBNR counts around the end of the
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Figure 10: Out-of-time prediction of the total IBNR count by the granular reserving method for each
evaluation date between September 2003 and August, 2004. These estimates are compared
with the observed values using data until August, 2009. The middle panel shows the dif-
ference between the predicted and actual IBNR count. The bottom panel zooms in on the
estimates in October and November, 2003.

year, whereas the 28 day chain ladder method severely underestimates IBNR counts for these
dates. The bottom panel of Figure 11 zooms in on the period October to November 2003. The
28 day chain ladder method retrieves the day of the week effect, since the length of every bin is
a multiple of 7 and therefore contains the same weekdays. The yearly chain ladder method has
bins with either 365 or 366 days. Since both bin sizes are not divisible by 7, the yearly chain
ladder method is unable to recognize the day of the week effect. This results in a systematic
overestimation of IBNR counts on Fridays and an underestimation on Sunday. The middle panel
of Figure 11 shows the difference between the predicted and actual IBNR count. The inability
of the 28 day chain ladder to capture the holiday effect results in large underestimations around
this time of the year. The yearly chain ladder overall performs better, but the prediction error
is sensitive to the day of the week on which the reserve is calculated. Capturing the holiday
and the day of the week effect simultaneously requires a model specified at the daily level. The
chain ladder method assumes independence between the reporting delay distribution and the
occurrence period of the claim. Since Figure 5 and 6 indicate that this assumption is not valid
at the daily level, a daily chain ladder would not perform well. Our granular method explains
both phenomena together by abandoning this independence assumption.
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Figure 11: Out-of-time prediction of the total IBNR count by the yearly and 28 day chain ladder meth-
ods for each evaluation date between September 2003 and August, 2004. These estimates are
compared with the observed values using data until August, 2009. The middle panel shows
the difference between the predicted and actual IBNR count. The bottom panel zooms in
on the estimates in October and November, 2003.

3.5 Scenario testing

3.5.1 Investigated scenarios

We further evaluate our approach with portfolios simulated along four different scenarios. Each
scenario generates data from an insurance portfolio from January 1, 1998 onwards. Figure 12
outlines the structure of these data sets. The insurer observes the claims that are reported
before the computation date (the gray area in Figure 12) and predicts the number of claims that
were not yet reported on the evaluation date (the hatched area in Figure 12). We consider two
evaluation dates (December 31, 2003 and August 31, 2004) to visualize the impact of holidays
near the end of the year on the accuracy of IBNR claim count predictions. The four scenarios
focus on characteristics of the portfolio or the claim handling process that have an impact on
the total IBNR count. Figure 13 visualizes the occurrence, reporting and IBNR processes for a
single simulated data set from each of the four scenarios.

Scenario 1: Baseline scenario This is the basic scenario from which the other three sce-
narios will slightly deviate. The occurrence of insured events follows a Poisson distribution
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Reporting delay s− t

Occurrence date t

January 1, 1998

Evaluation date τ
Computation date τ + 5

Figure 12: Structure of a simulated data set. We simulate accidents that occur between the first of
January, 1998 and the computation date, together with their associated reporting delay.
The gray area shows the data that is used to fit the model and to predict the hatched area,
which consists of the number of unreported claims at the evaluation date τ . We obtain
perfect predictions for the intersection of the gray area and the hatched area, since in this
region the reported counts are observed.

with an average of 100 claims on each occurrence date. For these occurrences the reporting
delay is simulated along the model specification outlined in Section 2, i.e. the distribution of the
time-changed reporting delay Ũ follows a lognormal distribution with density

fŨ (u) = 1
uσ
√

2π
e−

1
2 ·
( ln(u)−µ

σ

)2

,

where µ = 0 and σ = 1. The daily reporting exposure depends only on the reporting date and
is given by

αt,s = 0.10 · (0.20)1s∈Sat+1s∈unofficial-holiday · (0.01)1s∈Sun+1s∈national-holiday ,

where Sat, Sun, national-holiday and unofficial-holiday are the sets of all Saturdays,
Sundays, national holidays and unofficial holidays respectively. As such, the reporting probabil-
ity is reduced by 80% on Saturdays and unofficial holidays and by 99% on Sundays and national
holidays. These effects are of the same order as those found in the exploratory data analysis, see
e.g. Figure 5 in Section 3.1 and result in an average reporting delay of slightly more than three
weeks. The top row of Figure 13 visualizes a simulation from this baseline scenario. The middle
panel shows two regimes of reporting, where the days with few reported claims correspond to
the weekend and holidays.

Scenario 2: Volatile occurrences In this scenario external causes, such as the weather,
have a large effect on the number of accidents that occur on a given date. The environment



3 Case-study: reporting delay dynamics in insurance 22

can be in two states, a good state with an average of 100 accidents per day and a bad state in
which there are on average 400 accidents. The transitions between these states follow a Markov
process with transition matrix

(from/to good bad
good 0.9 0.1
bad 0.6 0.4

)
.

The model starts in the good state and then occasionally moves to the bad state. From this bad
state there is a large probability of returning to the good state with less occurrences on average.
The second row of Figure 13 (lhs) visualizes the impact of this bad state on the occurrence
process. The reporting delay distribution is the one described in the baseline scenario.

Scenario 3: Low claim frequency This scenario illustrates the effect of a strong reduction in
the number of occurred accidents. The occurrence process is modeled by a Poisson distribution
with a daily average of two claims. The reporting model from the baseline scenario is used.
This scenario is visualized in the bottom row of Figure 13. We observe that a low number of
accidents leads to more volatility in the IBNR process.

Scenario 4: Online reporting In this scenario the insurer introduces an online tool for claim
reporting. This online tool is launched at January 1, 2003 and increases the number of reports
in the weekend and on holidays. The new reporting exposures become

αt,s =

0.10 · (0.20)1s∈Sat+1s∈Unofficial-holiday · (0.01)1s∈Sun+1s∈Holiday s < 01/01/2003

0.10 · (0.50)1s∈Sat+1s∈Unofficial-holiday · (0.20)1s∈Sun+1s∈Holiday s > 01/01/2003
.

This reporting model is combined with the same occurrence process as in the baseline model,
that is a Poisson process with a constant intensity of 100 claims each day. The bottom row of
Figure 13 visualizes a simulation from this scenario. A vertical black line indicates the breakpoint
on January 1, 2003. After the introduction of online reporting we no longer observe dates with
zero reports.
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Figure 13: Each row visualizes a simulated data set from one of the four scenarios. The left column shows the daily number of accidents that
were reported by August 31, 2004 (cf. Figure 3). The middle column shows the daily number of reported claims (cf. Figure 4).
The right column visualizes the number of unreported accidents using a rolling evaluation date (cf. Figure 7). The red dashed
lines in the IBNR plots indicate the evaluation dates of December 31, 2003 and August 31, 2004.
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3.5.2 Calibrated models: granular versus aggregate

We compare the accuracy of the predictions of the hidden event counts using three models,
namely the exact granular model from which we simulated the data, an approximate granu-
lar model and a model for yearly aggregated data. The historical information (gray area in
Figure 12) is used to predict the number of IBNR claims (hatched area in Figure 12). Under
the granular approach these predictions naturally extend to delays beyond those yet observed,
whereas in the aggregate approach we limit the prediction window to the longest observed de-
lay. We consider a gap of five days between the computation and the valuation date. The
observations from these five days improve the prediction of the occurrence intensities λt and the
reporting probabilities pt,s, whereas there is no straightforward way to incorporate this data in
the method for yearly, aggregated data. The ability to use this additional data is one of the
advantages of the granular approach.

Exact granular model We use our knowledge of the shape of the distribution and report-
ing exposure structure behind the various scenarios and calibrate the exact same model for
reporting delay on the historical data. Hence we estimate the variance parameter in the log-
normal distribution for the smoothed reporting delay Ũ and the parameters γ for the covariate
effects in the reporting exposures αt,s. The reporting exposure αt,s changes the scale of the time
axis which is similar to the effect of the scale parameter exp(µ) of the lognormal distribution.
We avoid identifiability issues by setting µ equal to zero. The occurrence process is modeled
non-parametrically as described in Section 2.

Approximate granular model This model considers the more realistic situation where the
insurer wants to fit the model of Section 2, but is unaware of the exact underlying distribution.
Motivated by computational benefits the insurer chooses an exponential distribution for the
smoothed reporting delay Ũ , and structures the reporting exposures as

αt,s = αdow
s · αholiday

s · αdelay
s−t (11)

= exp((xdow
s )′ · γdow + (xholiday

s )′ · γholiday + (xdelay
s−t )′ · γdelay).

In this specification αdow
s captures the day of the week effect, αholiday

s identifies national and
unofficial holidays and α

delay
s−t adapts reporting exposure based on the time elapsed since the

claim occurred. For a single simulated data set we bin reporting delay in 13 bins according to
the strategy outlined in online appendix C. These same bins are then reused to construct the
delay covariate for all other simulations. In the fourth scenario (online reporting), we estimate
different parameter values for the parameters γdow and γholiday for reporting dates before and
after January 1, 2003.



3 Case-study: reporting delay dynamics in insurance 25

Scenario Eval. date exact granular approx. granular chain ladder
µ(PE) σ(PE) µ(PE) σ(PE) µ(PE) σ(PE)

Baseline 31 Dec 2003 -0.09 3.17 4.85 2.75 2.70 2.17
31 Aug 2004 -0.01 2.75 -0.18 2.82 1.20 2.36

Volatile occurrences 31 Dec 2003 0.11 2.64 5.01 2.93 0.16 15.52
31 Aug 2004 -0.04 2.27 -0.20 2.51 -0.82 14.90

Low claim frequency 31 Dec 2003 -0.69 23.89 4.42 20.85 1.65 16.25
31 Aug 2004 -2.30 20.19 -2.52 20.72 -1.33 17.96

Online reporting 31 Dec 2003 -0.13 3.12 2.93 3.07 -12.46 2.91
31 Aug 2004 0.02 2.80 0.73 2.89 -7.00 2.68

Table 1: Evaluation of the performance of the exact granular model, the approximate granular model
and the chain ladder method across four different scenarios and two evaluation dates.

A model for aggregated data: the chain ladder The chain ladder method described
in Section 3.4 is the industry standard for predicting the number of unreported claims. We
aggregate the simulated data by calendar year and benchmark our granular approach to the
chain ladder method on this aggregated data.

3.5.3 Results and discussion

We evaluate the performance of the reserving models by predicting the total number of IBNR
claims at the evaluation date, which corresponds to the hatched area in Figure 12. This pre-
diction is compared with the actual number of unreported claims as observed in the simulated
data set. We simulate 1000 data sets and calibrate the three models outlined in Section 3.5.2
on each of these. The prediction accuracy is measured by the percentage error (PE), i.e.

PE = 100 · N
IBNR(τ)− ̂N IBNR(τ)

N IBNR(τ) .

Positive percentage errors reflect underestimation, whereas negative values indicate an overes-
timation of IBNR counts. Table 1 shows the mean and standard deviation of the percentage
error for the two granular models and the chain ladder method. In Figure 14 boxplots of the
percentage error visualize the model performance across the four scenarios.

Impact of evaluation date We observe in all four scenarios an increase in unreported claims
on New Year’s Eve (see the last column in Figure 13). This is the result of multiple holidays
at the end of the year, which prevents clients from reporting their claim. We compare the
average percentage error in Table 1 on December 31, 2003 and August 31, 2004 to quantify the
impact of these holidays on prediction accuracy. The exact granular model fits the distributional
specification that was used in the simulation. Therefore this model can perfectly capture the
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Figure 14: Boxplots of the Percentage Error (PE) of the IBNR estimate across the four scenarios and
on both evaluation dates.

effect of holidays and has an average error close to zero on both dates. Seasonal effects do
not violate the chain ladder assumptions when their seasonal cycle coincides with the chain
ladder period. Since the end of the year holidays can be seen as a yearly seasonal event they
do not affect the prediction accuracy in the yearly chain ladder method. This explains the
fairly similar errors on both evaluation dates for the chain ladder method. Table 1 reveals an
underestimation of IBNR counts for the approximate granular model on December 31 across all
four scenarios. The data is simulated with a lognormal distribution for the smoothed reporting
delay, whereas in the approximate granular model we fit an exponential distribution. Since
these distributions are quite different, we include a delay effect αdelay

s−t in (11). This effect
can increase the reporting probability at specific delays, hereby moving the time-changed data
closer to an exponential distribution. However, the delay covariate can not remove all differences
between these distributions and this leads to a small underestimation on December 31, 2004 in
all scenarios. For all three models the choice of evaluation date does not influence the standard
deviation of the percentage error.

Baseline The top row of Figure 13 visualizes a single data set from the baseline scenario.
Both the occurrence and reporting process are stable. This leads to a yearly periodical pattern
in IBNR counts, which is easy to predict. Since all three models perform well (see Figure 14),
there is no reason to replace the chain ladder method by a granular model in this scenario.

Volatile occurrences The range of IBNR values encountered throughout a year is much
wider in this scenario compared to the other three scenarios. Table 1 and Figure 14 show
that the performance of the granular models is in line with their performance in the baseline
scenario. The occurrence process has little effect on the prediction accuracy, since we model the
occurrence process non-parametrically. The chain ladder method performs well on average, but
the standard deviation has risen compared to the baseline scenario. In over half of the cases the
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chain ladder produces an error of more than 10% when predicting the number of unreported
claims. The chain ladder method aggregates claims by occurrence year, hereby losing the exact
occurrence information. When the model was in the bad state on the evaluation date, this leads
to large underestimations of total IBNR counts. This scenario identifies an unstable accident
occurrence process as a reason for considering a granular model.

Low claim frequency The occurrence frequency is reduced from an average of hundred daily
claims to only two claims. The third row of Figure 13 visualizes a data set from this scenario.
Since on average only two accidents occur per day, our predictions for the intensities λt in the
occurrence process are less reliable. As seen in Figure 14 this leads to large prediction errors
for all models. This uncertainty follows mostly from the Poisson assumption (A1) in the data
generation process. The coefficient of variation σ

µ for a Poisson distribution with intensity λ

is given by 1√
λ
. A lower intensity in the Poisson proccess corresponds with a larger coefficient

of variation and thus more uncertainty in the data. We conclude that accurate estimation of
the number of hidden events is only possible when the expected number of events is sufficiently
large.

Online reporting On January 1, 2003 the insurer introduces an online tool to report claims,
which creates a breakpoint in the reporting process. The granular model performs well on both
evaluation dates, since we estimate different exposure parameters after the breakpoint. Both
evaluation dates correspond with around one year of post breakpoint data, which is insufficient
for applying the chain ladder method. Therefore, we calibrate the chain ladder method on all the
available data, which leads to an overestimation of the IBNR counts. This scenario illustrates
the benefits of a granular reserving model, when breakpoints can be identified in the data.

4 Conclusion

We propose a new method to model the number of events that occurred in the past, but which
are not yet registered due to an observation delay. Our approach provides an elegant and flexible
framework for modeling the observation delay subject to calendar day covariates by introducing
the concept of observation exposure. This framework can be applied for predicting the future cost
of warranties, pricing maintenance contracts and many other applications in operational research
where events are observed with a delay. We illustrate our method in an extensive insurance
case-study. Compared to methods designed for aggregated data our granular approach has
three advantages. First of all, introducing covariates gives insight into the observation process.
Second, our granular model can predict the expected number of observations for each future
date. This enables the detection of changes in the reporting process in a fast way. Third, by
introducing covariates the predictive performance is less sensitive to the chosen evaluation date.
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The simulation study further identifies a volatile occurrence process and breakpoints in the
event observation process as important arguments for choosing a data driven, granular model
as developed in this paper.
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A Maximum likelihood estimation of observation exposure pa-
rameters

We model a parameter vector γ which structures the observation exposures.

`(γ;χ) =
τ∑
t=1

τ∑
s=t

Nt,s · log(pt,s)−
τ∑
t=1

NR
t (τ) · log(pR

t (τ)) (12)

=
τ∑
t=1

τ∑
s=t

Nt,s · log
(
FŨ (ϕt(s− t+ 1))− FŨ (ϕt(s− t))

)
−

τ∑
t=1

NR
t (τ) · log

(
FŨ (ϕt(τ − t+ 1))

)
,

where

ϕt(d) =
t+d−1∑
v=t

exp(x′t,vγ).

No analytical solution exists for the optimal parameters γ and numerical optimization is re-
quired. We use the Newton-Raphson algorithm to maximize the likelihood (12). The Newton-
Raphson algorithm updates the parameter estimates iteratively as follows

γ̂(k+1) = γ̂(k) −H−1(γ̂(k)) · S(γ̂(k)). (13)

31
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In this formula S denotes the score vector and H is the Hessian of the loglikelihood in (12),
i.e. the vector of first order and the matrix of second order partial derivatives respectively. Below
we derive the expression for the first and second order derivatives of the loglikelihood when FŨ
is a known twice continuously differentiable distribution function. The components of the score
vector S are

∂`(γ, ξ;χ)
∂γi

=
τ∑
t=1

τ∑
s=t

Nt,s
pt,s
·
[
fŨ (ϕt(s− t+ 1)) · ∂ϕt

∂γi
(s− t+ 1)− fŨ (ϕt(s− t)) ·

∂ϕt
∂γi

(s− t)
]

−
τ∑
t=1

NR
t (τ)
pR
t (τ)

· fŨ (ϕt(τ − t+ 1)) · ∂ϕt
∂γi

(τ − t+ 1),

where fŨ ( · ) denotes the density function of FŨ ( · ) and

pt,s = FŨ (ϕt(s− t+ 1))− FŨ (ϕt(s− t))

pR
t,s(τ) = FŨ (ϕt(τ − t+ 1)) .

The derivatives of the time change operator ϕt with respect to γ are

∂

∂γi
ϕt(s− t+ 1) =

s∑
v=t

xt,v,i · αt,v

where xt,s,i is the covariate value of the i-th parameter for reporting on date s for a claim that
occurred on date t. The Hessian H is given by

∂`(γ;χ)
∂γi∂γj

=

τ∑
t=1

τ∑
s=t

Nt,s
pt,s
·

[
f

′

Ũ
(ϕt(s− t+ 1)) · ∂ϕt

∂γi
(s− t+ 1) · ∂ϕt

∂γj
(s− t+ 1)

− f
′

Ũ
(ϕt(s− t)) ·

∂ϕt
∂γi

(s− t) · ∂ϕt
∂γj

(s− t)

+ fŨ (ϕt(s− t+ 1)) · ∂ϕt
∂γi∂γj

(s− t+ 1)− fŨ (ϕt(s− t)) ·
∂ϕt

∂γi∂γj
(s− t)

]

−
τ∑
t=1

τ∑
s=t

Nt,s
p2
t,s

·

[
fŨ (ϕt(s− t+ 1))2 · ∂ϕt

∂γi
(s− t+ 1) · ∂ϕt

∂γj
(s− t+ 1)

+ fŨ (ϕt(s− t))2 · ∂ϕt
∂γi

(s− t) · ∂ϕt
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∂ϕt
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(s− t+ 1) · ∂ϕt
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(s− t)

− fŨ (ϕt(s− t+ 1)) · fŨ (ϕt(s− t)) ·
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·
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+ fŨ (ϕt(τ − t+ 1)) · ∂ϕt
∂γi∂γj

(τ − t+ 1)
]

+
τ∑
t=1

NR
t (τ)

pR
t (τ)2 · fŨ (ϕt(τ − t+ 1))2 · ∂ϕt

∂γi
(τ − t+ 1) · ∂ϕt

∂γj
(τ − t+ 1),

where the second order derivatives of ϕt with respect to γ are

∂

∂γi∂γj
ϕt(s− t+ 1) =

s∑
v=t

xt,v,i · xt,v,j · αt,v

The Newton-Raphson algorithm in (13) models the observation exposure parameters γ. Together
with the observation parameters, the simulation study of Section 3.5 estimates the variance
parameter σ in the lognormal time-changed distribution. The Newton-Raphson algorithm in
(13) can easily be extended to this case, where the distribution function of FŨ depends on
parameters.

B Simulation procedure

We outline the algorithm that was used to generate data sets from the four scenarios specified
in Section 3.5.1. This algorithm combines a model for the occurrence of events with a model for
the observation delay as described in Section 2. We divide the algorithm in three steps.

Step 1. Occurrence We first generate the number of occurred events. The number of daily
events follows a Poisson distribution

Nt ∼ Poisson(λt),

where the intensity λt is obtained from the occurrence process specification for the scenarios in
Section 3.5.

Step 2. Observation We now simulate the observation date for each occurred event. Com-
bining equation (6) and (7), we can write the probability that an event from date t is observed
on date s as

pt,s = P

(
Ũ ∈

[
s−1∑
v=t

αt,v,
s∑
v=t

αt,v

))
.

We define the observation date random variable

St = min
s

{
s ∈ N

∣∣∣ s∑
v=t

αt,v > Ũ

}
. (14)
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This expression transforms the time-changed observation delay random variable into the associ-
ated observation date. Consequently St satisfies P (St = s) = pt,s. For each event that occurred
on date t we generate a realization from the distribution of Ũ . We obtain the corresponding
observation date by replacing the random variable Ũ in (14) by this sampled value.

Step 3. Truncation With steps 1 and 2 we have simulated an observation date for each
occurred event. We split this data set into observed and hidden events. We use the data set
with observed events to calibrate the model and to predict the number of hidden events. The
hidden events are kept only for evaluating the prediction accuracy.

C A standard distribution for the time changed observation de-
lay

Modeling the time-changed observation delay with an exponential distribution has significant
computational benefits. Therefore, this section puts focus on the use of the exponential dis-
tribution as a standard distribution for modeling the time-changed observation delay Ũ . Since
the exponential distribution is light-tailed it is less suited for long or heavy-tailed delays. We
outline a strategy for addressing this weakness of the exponential distribution.

Our strategy bins the possible observation delays (s−t = 0, 1, . . .) and categorizes these bins with
a delay covariate xdelay

s−t . This covariate is then included in the observation exposure specification.
For each bin we estimate a parameter to capture its effect on observation exposure. These
parameters can strongly reshape the distribution, hereby overcoming many of the disadvantages
of the exponential distribution. We present a maximum likelihood driven binning strategy in
Appendix C.1 and then Appendix C.2 derives the same bins by linking our approach to the
non-parametric Kaplan-Meier estimator (Kaplan and Meier, 1958).

C.1 Binning observation delay

Our binning strategy maximizes the loglikelihood in (8) when the observation exposures depend
only on the time elapsed since the event occurred, i.e.

αt,s = exp(γdelay · xdelay
s−t ) = exp(γs-t),

where we estimate for each delay s − t a separate parameter γs-t. Furthermore we neglect
the last term in (8), capturing the effect of the right truncation. Under these restrictions, the
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loglikelihood to optimize is

`(γ;χ) = −
τ∑
t=1

τ−1∑
v=t

(
τ∑

s=v+1
Nt,s

)
· exp(γv-t) +

τ∑
t=1

τ∑
s=t

Nt,s · log
(
1− exp(− exp(γs-t)

)
We compute the derivatives of `(γ;χ) with respect to the observation exposure parameter γd

for positive delays d ∈ N

∂`(γ;χ)
∂γd = − exp(γd) ·

τ−d−1∑
t=1

τ∑
s=t+d+1

Nt,s + exp(γd)
exp(exp(γd))− 1 ·

τ−d∑
t=1

Nt,t+d.

Both sums in this expression have a logical interpretation. The first sum (
∑τ−1−d
t=1

∑τ
s=d+t+1Nt,s)

counts the number of observed events with a delay longer than d days, whereas the second sum
(
∑τ−d
t=1 Nt,t+d) counts all events with a delay of exactly d days. These derivatives are zero when

exp(γd) = − log
(

1− |delay = d|
|delay > d|

)
, (15)

where |delay = d| denotes the number of events observed with a delay of d days and |delay > d|
the number of events with a delay of more than d days.

We propose to bin the observation delay by grouping delays for which (15) is approximately
constant. Figure 15 visualizes this approach for the liability insurance data set discussed in
Section 3. This figure shows in red the estimated delay parameters using approximation (15).
The top panel shows the estimates for delays up to 31 days, whereas the parameters for larger
delays (up to 400 days) are shown in the bottom panel. Based on this knowledge observation
delay is grouped in 23 bins, separated by vertical gray bars in Figure 15. We use more bins for
short delays, since for these delays (15) differs strongly. Moreover, many accidents have a short
observation delay, which makes these first delays more important. As expected, this binning
strategy identifies an increase in observation probability after exactly one year. In Section 3 we
structure these bins in a categorical delay covariate xdelay

s−t and estimate observation delay in a
maximum likelihood framework. In Figure 15 the fitted parameters are plotted in blue. These
parameters deviate from those found using approximation (15), since other covariate effects
were estimated simultaneously. However, the maximum likelihood estimates are close to the
approximate values which makes this approximation suitable for choosing initial values in the
calibration.

C.2 A link with the Kaplan-Meier estimator

We show that under the binning strategy of Appendix C.1 the time changed model has the same
flexibility as the Kaplan-Meier estimator and is as such suitable for modelling a wide range of
portfolios.
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Figure 15: Observation exposure estimates for the delay effect during the first month after the accident
occurrence (top) and longer delays (bottom). In red, we show estimates obtained for each
delay using (15). The vertical lines indicate the chosen bins. Maximum likelihood estimates
for the observation delay parameter corresponding to each bin in the regression structure
proposed in Section 3.2 are plotted in blue.

The Kaplan-Meier estimator for the survival function of the observation delay random variable
is

̂P (delay > d) =
d∏
i=0

(
1− |delay = i|
|delay > i|

)
, (16)

When we model the time-changed observation delay distribution Ũ using an exponential distri-
bution then the survival probability for an event from occurrence day t is

P (delay > d | occ. day = t) = P
(
Ũ > ϕt(d+ 1)

)
(17)

= 1− FŨ

(
d+1∑
i=1

αt,t+i−1

)

=
d∏
i=0

exp (−αt,t+i) .

Notice the similarity between this expression and the Kaplan-Meier estimator in (16). When
the observation exposure only depends on the time passed since the occurrence of the event, i.e.
αt,t+i := αi, then

P (delay > d) =
d∏
i=0

exp (−αi) ,

where αi is the observation exposure at delay i. This expression no longer depends on the
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occurrence date t of the event. The Kaplan-Meier estimator is retrieved when

αi = − log
(

1− |delay = i|
|delay > i|

)
. (18)

Since αi = exp(γi), this is the same estimator we found in (15) through maximum likelihood
estimation. This show that by estimating a separate delay parameter for each delay (d = 0, 1, . . .)
we obtain a model with the same flexibility as the non-parametric Kaplan-Meier estimator.
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