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Abstract

A data set from a Belgian telematics product aimed at young drivers is used to identify how
car insurance premiums can be designed based on the telematics data collected by a black box
installed in the vehicle. In traditional pricing models for car insurance, the premium depends
on self-reported rating variables (e.g. age, postal code) which capture characteristics of the
policy (holder) and the insured vehicle and are often only indirectly related to the accident risk.
Using telematics technology enables tailor-made car insurance pricing based on the driving
behavior of the policyholder. We develop a statistical modeling approach using generalized
additive models and compositional predictors to quantify and interpret the effect of telematics
variables on the expected claim frequency. We find that such variables increase the predictive
power and render the use of gender as a rating variable redundant.

Keywords: Pay-as-you-drive insurance; Usage-based insurance; Risk classification; Generalized
additive models; Compositional predictors; Structural zeros.

1 Introduction

For a unique Belgian portfolio of young drivers in the period between 2010 and 2014, telematics
data on how many kilometers are driven, during which time slots and on which type of roads were
collected using black box devices installed in the insureds’ cars. Our aim is to incorporate this
information in statistical rating models, where we focus on predicting the number of claims, in
order to adequately set premium levels based on individual policyholder’s driving habits.
Determining a fair and correct price for an insurance product (also called ratemaking, pricing
or tarification) is crucial for both insureds and insurance companies. Car insurance is traditionally
priced based on self-reported information from the insured, most importantly: age, license age,
postal code, engine power, use of the vehicle, and claims history. However, these observable risk
factors are only proxy variables, not reflecting current driving habits and driving style. Telematics
technology — the integrated use of telecommunication and informatics — may fundamentally change
the car insurance industry. The use of this technology in insured vehicles enables to transmit and
receive information that allows an insurance company to better quantify the accident risk of drivers
and adjust the premiums accordingly through usage-based insurance (UBI). By monitoring their
customers’ motoring habits, underwriters can increasingly distinguish between drivers who are safe



on the road from those who merely seem safe on paper." Young drivers and drivers in other high
risk groups, who are typically facing hefty insurance premiums, can be judged based on how they
really drive. Regulation also plays a role as the use of indirect indicators of risk is being questioned
by the European Court of Justice. In 2012, a European Union (EU) ruling came into force, banning
price differentiation based on gender.”? Through telematics, women may be able to confirm that
they really are safer drivers.

The use of telematics risk factors potentially enables an improved method for determining the
cost of insurance. Due to a more refined customer segmentation and greater monitoring of the
driving behavior, UBI addresses the problems of adverse selection and moral hazard that arise
from the information asymmetry between the insurer and the policyholders (Filipova-Neumann
and Welzel, 2010). Closer aligning insurance policies to the actual risks increases actuarial fairness
and reduces cross-subsidization compared to grouping the drivers into too general actuarial classes
(Desyllas and Sako, 2013). Telematics insurance gives a high incentive to change the current driving
pattern and stimulates more responsible driving (Parry, 2005; Litman, 2015; Tselentis et al., 2016).
Users’ feedback on driving behavior and gamification of UBI can further enhance the customer
experience by making it more interactive, gratifying and even exciting (Toledo et al., 2008). Less
and safer driving is encouraged, leading to improved road safety and reduced vehicle travel with
less congestion, pollution, fuel consumption, road cost, and crashes (Greenberg, 2009).

Usage-based insurance (Tselentis et al., 2016) includes pay-as-you-drive (PAYD) and pay-how-
you-drive (PHYD) schemes. PAYD focuses on the driving habits, e.g. the driven distance, the time
of day, how long the insured has been driving. PHYD also considers the driving style, e.g. the speed,
harsh or smooth braking, aggressive acceleration or deceleration, cornering and parking skills.

Telematics insurance started as a niche market when the technology first surfaced more than 10
years ago. Farly adopters of UBI were seen in the United States, Italy and the United Kingdom. On
28 April 2015 the European Parliament voted in favor of eCall regulation which forces all new cars
in the EU from April 2018 onwards to be equipped with a telematics device that will automatically
dial 112 in the event of an accident, providing precise location and impact data.’

This potentially high dimensional telematics data, collected on the fly, forces pricing actuaries
to change their current practice, both from a business as well as a statistical point of view. New
statistical models have to be developed to adequately set premiums based on an individual policy-
holder’s driving habits and style and the current literature on insurance rating does not adequately
address this question. In this paper, we take a first step in this direction. We use a Belgian
telematics insurance data set with in total over 297 million kilometers driven. Based on how many
kilometers the insured drives, on which kind of roads and during which moments in the day, we
quantify the impact of individual driving habits on expected claim frequencies. Combined with a
similar predictive model for claim severities, which is outside of the scope in this paper, this allows
for tailor-made car insurance pricing. We first discuss how a car insurance policy is traditionally
priced and relate this to the literature investigating the impact of vehicle usage on the accident
risk in Section 2. The data set is described in Section 3, along with the necessary preliminary
data processing steps to combine the telematics information with the policy and claims informa-
tion. By constructing predictive models for the claim frequency, we compare the performance of
different sets of predictor variables (e.g. traditional vs. purely telematics) and unravel the relevance
and impact of adding telematics insights. In particular, we contrast the use of time and distance
as exposure-to-risk measures. The novel methodological contribution of this paper, see Section
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3Regulation (EU) 2015/758 of the European Parliament and of the Council of 29 April 2015 concerning type-
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4, incorporates the divisions of the driven distance by road type and time slots as compositional
predictors in the regression framework of generalized additive models and constructs a new way to
interpret and visualize their effect on the average claim frequency. We develop both a conditioning
and a projection approach to handle structural zeros in one or more components of a compositional
predictor. We present the results in Section 5 while Section 6 concludes.

2 Statistical background and related modeling literature

Insurance pricing is the calculation of a fair premium, given the policy(holder) characteristics, as
well as information on claims reported in the past (if available). Pricing relies on regression tech-
niques and requires a data set with policy(holder) information and corresponding claim frequencies
and severities, where severity is the ultimate total impact of a claim. The claim frequency and
severity components are typically modeled separately using regression techniques (Frees, 2014).
The current state-of-the-art (see Denuit et al., 2007; de Jong and Heller, 2008, for an overview)
uses generalized linear models (GLMs; McCullagh and Nelder, 1989), with typically a Poisson GLM
for the claim counts and a gamma GLM for the claim severities. In car insurance, the duration
of the policy period during which coverage is provided, is referred to as the exposure-to-risk. The
expected number of claims is in practice modeled directly proportional to the exposure, to make
the premiums proportional to the length of coverage. From a theoretical point of view, this can be
motivated by the probabilistic framework of Poisson processes (Denuit et al., 2007). It is however
suggested (see e.g. Butler, 1993) that every kilometer traveled by a vehicle transfers risk to its
insurer and hence the number of driven kilometers (car-kilometer) should be adopted as the expo-
sure unit instead of the policy duration (car-year). Statistical studies show how claim frequencies
significantly increase with kilometers (Bordoff and Noel, 2008; Ferreira and Minikel, 2010; Litman,
2011; Boucher et al., 2013; Lemaire et al., 2016). Most of these studies show a relationship between
claim frequencies and the number of driven kilometers which is less than proportional. One of the
focus points in our study, see Section 3.2, is to investigate the relationship between the expected
number of claims and both exposure-to-risk measures (i.e. time and distance).

Using models involving both policy and telematics predictors, Ayuso et al. (2014, 2016a) study
the traveled time and distance to the first accident using Weibull regression models. Paefgen et al.
(2014) investigate the relationship between the accident risk and driving habits using logistic re-
gression models. Their case-control study design does not allow for inference on the probability
of accident involvement. The difference in time exposure between the vehicles with accident in-
volvement (6 months prior to the accident) and the control group (24 months) is however only
used to obtain a per-month distance exposure, but is further neglected in the study. Traditional
risk factors were not accounted for, since that information was not available, and the composi-
tional nature of the constructed telematics predictor variables was ignored. In contrast, see Section
3.2, main focus points in our research are (i) combining the new telematics variables with tradi-
tional policy(holder) information through a careful model and variable selection process and (ii)
incorporating the compositional structure of the telematics variables in the analysis.

3 Telematics insurance data

We consider data from a Belgian portfolio of drivers with motor third party liability (MTPL)
insurance. MTPL insurance is the legally compulsory minimum insurance covering damage to third
parties’ health and property caused by an accident for which the driver of the vehicle is responsible.
The special type of MTPL product we are considering, is specifically aiming for young drivers who
are traditionally facing high insurance premiums. Insureds were offered a substantial discount on



their premium if they agree to install a telematics black box device in their car. The telematics
box collects statistics on the driving habits: how often one drives, how many kilometers, where
and when. Information on the driving style (such as speeding, braking, accelerating, cornering or
parking) is not registered. The telematics data did not have an effect on the (future) premium
levels of the insureds and did not induce any restrictions on how much or where they can drive.

3.1 Data processing

The unstructured telematics data, collected by the telematics box installed in the vehicle, are first
transmitted to the data provider who structures and aggregates these data each day and then
reports them to the insurance company as a CSV file (Figure 1a). Only the structured, aggregated
telematics information is available to us. Each daily file contains information on the daily driven
distance (in meters) for each policyholder. This number of meters is split into 4 road types (urban,
other, motorways and abroad) and 5 time slots (6h-9h30, 9h30-16h, 16h-19h, 19h-22h and 22h-6h).
The nature of the data does not allow for a classification of a driven meter by road type and time
slot simultaneously. The number of trips, measured as key-on/key-off events, is also reported. This
is a typical setup (see Paefgen et al., 2014). In this study, we analyze the telematics data collected
between January 1, 2010 and December 31, 2014.
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Figure 1: (a) A schematic overview of the flow of information. (b) The number of registered kilometers
on each day on an aggregate, portfolio level for the telematics data observed between January
1, 2010 and December 31, 2014. The outliers by the turn of the year 2014, corresponding to a
technical malfunction, are indicated as triangles.

The telematics data are linked to the policy(holder) and claims information of the insurance
company corresponding to the portfolio under consideration (see Table 1 for a complete list). Policy
data, such as age, gender and characteristics of the car, are directly reported by the insured to the
insurer at underwriting (see Figure 1a). They are updated over time which enables us to link the
claims occurring at a specific moment in time to the correct policy information. Each observation
of a policyholder in the policy data set refers to a policy period over which the MTPL insurance
coverage holds and contains the most recent policy information. For most insureds, this coverage
period is one year, however, it can be smaller for several reasons. If for instance the policyholder
decides to add a comprehensive coverage, buys a new vehicle, or changes his residence during the
term of the contract, the policy period will be restricted to the date of the policy modification and
an additional observation line will be added for the subsequent period. A policy period can also be
split when the coverage is suspended for a certain time.



Claims information

claims

number of reported MTPL claims at fault during the
policy period

Policy information

policy period

age

experience

gender

material damage cover

postal code
bonus-malus

age vehicle

duration in days of the policy period (minimal 30 days
and at most one year)

age of the least experienced driver listed on the pol-
icy at the start of the policy period, measured as the
number of years between the birth date and the start
of the policy period

experience of the least experienced driver listed on the
policy, measured as the number of years between the
date when the driver’s permit was obtained and the
start of the policy period

gender of the least experienced driver listed on the
policy (male or female)

indicator whether the insurance policy also covers ma-
terial damage (yes or no)

Belgian postal code where the policyholder resides
bonus-malus level of the policy, reflecting the past in-
dividual claims experience, between —4 and 22 with
lower values indicating a better history

age of the vehicle, measured as the number of years
between the date when the car was registered and the
start of the policy period

kwatt horsepower of the vehicle, measured in kilowatt

fuel fuel type of the vehicle (petrol or diesel)
Telematics information

distance distance in meters driven during the policy period

yearly distance

trips

average distance

road type
time slot

week/weekend

distance in meters driven during the policy period,
rescaled to a full year by dividing by duration in days
of the policy period and multiplying by 365

number of trips (key-on, key-off) during the policy
period

distance in meters driven on average during one trip,
obtained by dividing the distance by the number of
trips

division of the distance into 4 road types (urban,
other, motorways and abroad)

division of the distance into 5 time slots (6h-9h30,
9h30-16h, 16h-19h, 19h-22h and 22h-6h)

division of distance into week (Monday to Friday)
and weekend (Saturday, Sunday)

mation.

Table 1: Description of the variables contained in the data set arising from the different sources of infor-



Using the policy number and period we first merge the telematics information on daily level
with the policy data set. Next, we adjust the start and end date of the policy periods based on the
first and last day at which telematics data are observed for each policy period of each insured. This
ensures that the adjusted policy periods reflect time periods over which both the insurance coverage
holds and telematics data are collected. Based on Figure 1b, where we plot the evolution of the
driven distance on each day by all drivers of the portfolio, we suspect that technical deficiencies
of the data provider can cause an underreporting of the number of meters driven on an aggregate
level. The outliers indicated as triangles by the turn of the year 2014 could be linked to a serious
technical failure preventing telematics information from being reported for a significant part of our
portfolio. We dealt with this by removing this period of roughly one month from the policy periods
of all insureds. In the remainder of the observation period between January 1, 2010 and December
31, 2014, clear causes of underreporting could not be identified and hence we did not take any
other corrective action. However, this illustrates that data reliability forms a challenge for this
new telematics technology. We further removed those observations with a policy duration of less
than 30 days in order to avoid senseless observations of only a couple of days and retained only the
complete observations with no missing policyholder information.

Next, we aggregate the telematics information by policyholder and period. This means that we
sum the driven distance, their divisions into 4 road types and 5 time slots, and the number of trips
made. Finally, we use the claims information to extract the number of MTPL claims at fault that
occurred between the start and end date of the adjusted policy periods for each policy record.

Over the time period of this study, we end up with a data set of 33259 observations. Table 1
gives an overview of the available variables coming from the three data sources (claims, policy, and
telematics). These observations correspond to 10406 unique policyholders, who are followed over
time, have jointly driven over 297 million kilometers during a combined insured policy period of
17681 years and reported 1481 MTPL claims at fault. Hence, on average, there were 0.0838 claims
per insured year or 0.0499 claims per 10000 driven kilometers. For over 95% of the observations
no claim occurred during the corresponding policy period, whereas for 52 observations two claims
occurred and for a single observation even three during the same policy period.

3.2 Risk classification using policy and telematics information

The goal of this research is to build a rating model to express the number of claims as a function
of the available covariates. Two sources of information are combined which are described in detail
in Table 1. First, there is the self-reported policy information which contains all rating variables
traditionally used in car insurance pricing. The second source of information is derived from the
telematics data. The main objective is to discover the relevance and impact of adding the new
telematics insights using flexible statistical modeling techniques in combination with appropriate
model and variable selection tools. One of the key questions is whether the risk transferred from
the policyholder to the insurer is proportional to the duration of the policy period or the driven
distance during that time. Telematics technology allows a shift to be made from time as exposure
to distance as exposure. This would lead to a form of pay-as-you-drive insurance, where a driver
pays for every kilometer driven. Histograms of both potential exposure variables are contrasted in
Figure 2a and 2b.

In order to investigate the influence and explanatory power of the telematics variables in pre-
dicting the risk of an accident, we compare the performance of four sets of predictor variables used
to model the number of claims, see Figure 2c. The classic set only contains policy information and
uses time as exposure-to-risk. The telematics set only contains telematics information and uses
the distance in meters as exposure-to-risk. The two other models, time hybrid and meter-hybrid,
both contain policy and telematics information. Whereas the first one uses time as an exposure
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Figure 2: Histogram of (a) the duration (in days) of the policy period (at most one year) and (b) the driven
distance (in 1000 km) during the policy period. (¢) A graphical representation of the similarities
and differences between the four predictor sets.

measure, the second one uses distance. These four predictor sets contrast on the one hand the
use of traditional policy rating variables and telematics variables and on the other hand the use of
policy duration versus distance as exposure measures in the assessment of the risk.

The main predictors based on the policy information besides the duration of the policy period
include the age of the driver, the experience as measured using the driver’s license age, the gender,
characteristics of the car and the postal code where the policyholder lives. In the case of multiple
insured drivers (around 18% of the observations), we select (in consultation with the insurer) the
age, gender, experience and postal code belonging to the driver with the most recent permit and
hence the lowest experience. This is in line with the strategy of the insurer who offers this type
of insurance contract to young drivers. The bonus-malus level is a special kind of variable that
reflects the past individual claims experience. It is a function of the number of claims reported in
previous years with values between —4 and 22 where lower levels indicate a better history. The
insurer uses a slightly modified version of the former compulsory Belgian bonus-malus system,
which all companies operating in Belgium have been obliged to use from 1992 to 2002, with minor
refinements for the policyholders occupying the lowest levels in the scale. Despite the deregulation,
many insurers in the Belgian market still apply the former mandatory system (Denuit et al., 2007).
Even though the bonus-malus scale level is not a covariate of the same type as the other a priori
variables, we keep it in the analysis to have an idea of the information contained in this variable
(as is also done in, for instance, Denuit and Lang, 2004). From a statistical point of view, it tries
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Figure 3: Histograms and bar plots of the continuous and categorical policy variables contained in the data
set. The map in the lower right depicts the geographical information by showing the proportion
of insureds per squared kilometer living in each of the different postal codes in Belgium. The five
class intervals have been created using k-means clustering.

to structure dependencies between observations arising from the same policyholder. An overview
of the policy predictor variables and their sample distributions is given in Figure 3.

In the telematics information set we use the distance driven during the policy period as a
predictor but we also create two additional telematics variables, the yearly and average distance
driven, see Table 1. Histograms of these variables are shown in Figure 4. The divisions of the
driven distance by time slot, road type and week/weekend are highly correlated with the total
driven distance as they sum up to this amount. To distinguish the absolute information measured
by the driven distance in a certain policy period from the compositional information of the distance
split into different categories, we consider box plots of the relative proportions in Figure 4. These
relative proportions sum to one for each observation.To stress this interconnectedness present in the
different splits, we show the compositional profiles of a sample of 100 drivers on top of the marginal
box plots. Another important point to stress is that not all components of a certain division of the
distance are present for each observation. For instance, if an insured does not drive abroad during
the policy period, the relative proportion of the driven distance abroad will be zero. The use of
such compositional information as predictors in statistical modeling is a key issue in this research.
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Figure 4: Graphical illustration of the telematics variables contained in the data set. For the yearly and
average distance, we construct histograms. For the division of the driven distance by road types,
time slots and week/weekend, we construct box plots of the relative proportions. To highlight
the dependencies intrinsic to the fact that the division into different categories sums to one, we
plot profile lines for 100 randomly selected observations in the data set.

4 Model building and selection

We model the frequencies of claims by constructing Poisson and negative binomial (NB) regression
models. We denote by N;; the number of claims for policyholder ¢ in policy period t with ¢ =
1,...,7 and t = 1,...,T;. The model is denoted by N;; ~ Poisson(pi;) or Nz ~ NB(u, ¢), where
it = E(Nj) represents the expected number of claims reported by policyholder i in policy period
t and ¢ is the parameter of the NB distribution such that Var(N;) = pu + y?t /&, allowing for
overdisperion. A log linear relationship between the mean and the predictor variables is specified
by the log link function. This means that we set u;; = exp(n;:) where 7; is a predictor function
of the available explanatory factors. The probability mass functions for the Poisson and the NB
models are, respectively, expressed as

exp(—pit) pip *T(p+n i\
P(Nit = ni) = % and P(Ny = ng) = <¢ fu‘t) iﬁ,F((ﬁ;) ((ﬁiiﬂ) :
it 7 2T (3

For each of the predictor sets in Figure 2¢ we construct the best model using the allowed information
based on AIC, see Section 4.3. Additionally, we identify the best models under the restriction that
the risk is proportional to the time or meter exposure. This is accomplished by incorporating
the logarithm of the exposure-to-risk, either duration of the policy period or total distance driven




during the policy period, as an offset term in the predictor, i.e. a regression variable with a constant
coefficient of 1 for each observation. In the most general case, the predictor has the form

Mit = Bo + offset + nSt 4yt 4 gpPetiel g pre y poomp (1)
where () denotes the intercept, the categorical effects are bundled in 7§, the term 75" contains the

effects of the continuous predictors, nSpatlal represents the geographical effect, n;® the policyholder-

specific random effect and the term n;"" embodies the effects of the compositional predictors.
Under the offset restriction, the continuous effect of the exposure-to-risk, either the duration of the
policy period (time based rating) or the driven distance (meter based rating), gets replaced by the
logarithm of the exposure-to-risk as an offset.

Zero inflated variants of these models are not considered because of interpretability reasons.
Such models are not able to capture the effect of a varying exposure-to-risk in a transparent and
intuitive way.

4.1 Generalized additive models

The model framework we work with in this study is the one of generalized additive models (GAMs),
introduced by Hastie and Tibshirani (1986). GAMs allow to incorporate continuous covariates in
a more flexible way as compared to the traditional GLMs used in actuarial practice (see e.g. Klein
et al., 2014). From an accuracy standpoint, GAMs are competitive with popular black box machine
learning techniques (such as neural networks, random forests or support vector machines), but they
have the important advantage of interpretability. In insurance pricing it is of crucial importance
to have interpretable results in order to understand the premium structure and explain this to
clients and regulators. Using a semiparametric additive structure, GAMs define nonparametric
relationships between the response and the continuous variables in the predictor in the following
way

J
W4 = ZaB+ Y fi(aa),
j=1
where Z;; represents the row corresponding to policyholder ¢ in policy period ¢ of the model matrix
of the categorical variables with parameter vector 3 and f; represents a smooth function of the
Jth continuous predictor variable. To estimate f;, we choose cubic spline basis functions Bjy,
such that in our models fj(z) = >{_;vjxBjr(x). The knots are chosen using 10 quantiles of
the unique x; values. Cardinal basis functions parametrize the spline in terms of its values at the
knots (Lancaster and Salkauskas, 1986). For identifiability, we impose constraints by centering each
smooth component around zero, thus Ele EtT;l fi(zji) =0for j =1,...,J. To avoid overfitting,
the cubic splines are penalized by the integrated squared second derivative (Green and Silverman,
1994), which yields a measure for the overall curvature of the function. For each component, this
penalty can be written as a quadratic function,

q q
/ (ff @) de =" Z%k’m/ () Bl (x)de =4S,
k=1 [=1

with (S)u = [ B (x)Bjj(z)dx. Given these penalty functions for each component, we define the
penalized log-likelihood as

J
1
) -5 > A58 (2)
j=1
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where £(1)) denotes the log likelihood as a function of all model parameters ¥ = (3,v1,...,7v;)
and \; denotes the smoothness parameter that controls the tradeoff between goodness of fit and
the degree of smoothness of component f; for j = 1,...,J. Different smoothing parameters for
each component allow to penalize the smooth functions differently.

The model parameters 1 are estimated by maximizing (2) using penalized iteratively reweighted
least squares (P-IRLS) (Wood, 2006). For the Poisson model, the smoothing parameters A, ..., Ay
are estimated using an unbiased risk estimator criterion (UBRE), which is a rescaled version of
Akaike’s information criterion (AIC; Akaike, 1974). For the negative binomial model, we estimate
the smoothing parameters and the scale parameter ¢ using maximum likelihood (ML). Alternatively,
the smoothing parameters can also be estimated using restricted maximum likelihood (REML;
Krivobokova and Kauermann, 2007; Reiss and Ogden, 2009; Wood, 2011).

In addition to categorical and continuous covariates, the data set contains spatial information,
namely the postal code where the policyholder resides. Insurance companies tend to use the ge-
ographical information of the insured’s residence as a proxy for the traffic density and for other
unobserved socio-demographic factors of the neighborhood. We model the spatial heterogeneity of
claim frequencies by adding a spatial term 7} atial — £ (1aty, long;) in the additive predictor ny,
using the latitude and longitude coordinates (in degrees) of the center of the postal code where
the policyholder resides. We use second order smoothing splines on the sphere (Wahba, 1981) to
model fs. This allows us to quantify the effect of the geographic location while taking the regional
closeness of the neighboring postal codes into account.

In our data set, many policyholders ¢ = 1,...,I are observed over multiple policy periods
t = 1,...,T;. This longitudinal aspect of the data can be modeled by including policyholder-
specific random effects 1;¢ in the predictor. The generalized additive model considered thus far
is extended in this way by exploiting the link between penalized estimation and random effects
(see e.g. Ruppert et al., 2003). We assess whether such random effects are needed to take the
correlations between observations of the same policyholder into account using the approximate test
for a zero random effect developed by Wood (2013).

4.2 Compositional data

The divisions of the total driven distance into the different categories — road types (4), time slots
(5) and week/weekend (2), see Table 1 — are highly correlated with and sum up to the total driven
distance. Hence in Figure 4 we divided all components of each split by the total driven distance.
Incorporating these divisions, either in absolute or relative terms, in a predictor also containing the
total distance leads to a perfect multicollinearity problem. The most straightforward way to deal
with this would be to leave one component out, but this approach is not permutation invariant
and the statistical inference will depend on which component is removed, making interpretations
misleading. The standard regression interpretation of a change in one of the components of the
distance when the other components are held constant is not possible due to the sum constraint.
We introduce and further develop the necessary statistical tools to model such predictors.

In the literature, data which quantitatively describe the parts of some whole and provide only
relative information between their components are called compositional data (van den Boogaart
and Tolosana-Delgado, 2013; Pawlowsky-Glahn et al., 2015). Typical examples include mineral
compositions, molar concentrations and household budgets. In our setting, the divisions of the
distance driven are compositional. Scale invariance is a key property: if a composition is scaled by
a constant, the information carried is completely equivalent. Therefore compositional data can be
represented by real vectors with positive components that sum to one. The space of representations
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of compositions is called the simplex of D parts, defined by

D
SD: {w:($17-~-7$D)t:xi>072$i=1}.
i=1

When data are considered compositional, classical statistics, that do not take the special geometry
of the simplex into account, are not appropriate. Section 4.2.1 revises the necessary geometrical
concepts to work with compositional data. Extending the current literature, we propose a new
way of quantifying and interpreting the effect of the compositional explanatory variables on the
outcome in Section 4.2.2. Section 4.2.3 introduces two approaches to accommodate for structural
zeros in regression with compositional predictors.

4.2.1 The Aitchison geometry of the simplex

Aitchison (1986) introduced operations between compositional data vectors which define a vector
space structure on the mathematical simplex known as the Aitchison geometry of the simplexr.
Perturbation plays the role of addition on the simplex and is defined as a closed component-
wise product * ® y = C(z1y1,-..,2pyp)’, where the closing operation C ensures a total sum
of 1, i.e. the closure of x is C(x) = x/ ZiD:l x;. The product of a vector by a scalar is called
powering and is defined as the closed component-wise powering of a composition by a scalar,

le.a®x=C(2f,...,29)" for @ € R. The Aitchison inner product for compositions,
y D
(3
(W) D;zll Ty, Zlnml In(y:) - (Zlnxllem@j))
i=1j j=

is proportional to the scalar product of the vectors formed by all possible pairwise logratios of
the two compositions and induces the following norm ||z||, = v/(z,x), and distance d,(z,y) =
lx © y|la, where © represents the opposite operation of @, i.e. Oy = ®((—1) ® y), a closed
component-wise division. The simplex along with these operations then forms a (D —1)-dimensional
Euclidean vector space (S”,®,®, (-, -),). Given this Euclidean structure, we can measure distances
and angles, and define related geometrical concepts. Elementary statistical notions involving the
metrics of the sample space can be adapted to the Euclidean structure of the simplex.

Compositional data are analyzed using a logratio approach and compositions @ from the simplex
can be represented in the real space using the centered logratio transformation (clr),

ui:clri(:c):ln< i ) i=1,....D, g(m):(ﬁxz)l/]) 3)
=1

g(x)

where g(x) denotes the geometric mean of the components. The clr transformation defines an
isometry between S” and the (D—1)-dimensional subspace of R of vectors whose components
add to zero, denoted by HP = {u € RP| Z?: L u; = 0} and called the clr-plane. Using matrix
notation we can write the clr transform and its inverse as

uw = clr(x) = In(x/g(x)), and x = clr(u) = C(exp(u)), (4)

where the logarithmic and exponential function apply componentwise. An orthonormal basis of
SP can be obtained from an orthonormal basis of H” using the inverse clr transformation. A
transformation between SP and RP~! that provides the coordinates of any composition with respect
to a given orthonormal basis is called an isometric logratio transformation (ilr). The one originally
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defined by Egozcue et al. (2003) maps a compositional data vector « in a (D—1)-dimensional real
vector z = (21,29,...,2p_1)" with components

D i
2 = il () = ! ln< ° ) i=1,...,D—1. (5)

D—i+1 Di”HjD:iJrl x;

By arranging the corresponding orthonormal basis vectors in % by columns, we obtain a D x(D—1)
matrix V with elements

D—j . -1
: — for i =j, , :
V(D —=j+1)(D—)) V(D —=j+1)(D—))
for which it holds that V'V = Ip_; and VV! = Ip—(1/D)1p1%,, where Ip is the identity matrix of
dimension D and 1p a D-vector of ones (Egozcue et al., 2011). Then we can write the ilr transform
and its inverse as

Vij = for i > j, and 0 otherwise,

z=ilr(x) = Viine = Vicr(x), and x =ilr'(z) = C(exp(Vz)). (6)

The clr and ilr transformations reflect how all relevant information of a composition is conveyed
by the component logratios. In the case D = 2, the ilr transformation (5) is proportional to the
logit function, which is used in logistic regression to transform the probability 0 < p <1 of a binary
response into an unrestricted log-odds.

As the clr and ilr transformations are isometric, all angles and distances are preserved. This
means that, whenever compositions are transformed into coordinates, the metrics and operations
in the Aitchison geometry of the simplex are translated into the ordinary Euclidean metrics and
operations in real space. For instance, the Aitchison inner product of two compositions is equal to
the real inner product of their clr or ilr transformed vectors,

D—-1

(®,Y)q = (clr(x),clr(y E:clrZ )elr; (y) = (ilr(x), ilr(y Z ilr; (x)ilr; (y

=1

Even though the simplex S” is a subset of the real space R”, Aitchison (1986) showed that the
geometry is clearly different. Ignoring the compositional nature of the data in a statistical context
can lead to incompatible or incoherent results. The principle of working on coordinates (Mateu-
Figueras et al., 2011) is to first express the compositional data with respect to an orthonormal
basis of the underlying vector space with Euclidean structure. Next, to apply standard statistical
techniques to the vectors of coordinates and, finally, to back-transform and describe the results in
terms of the simplex. Final results do not depend on the chosen basis.

4.2.2 A new interpretation for compositional predictors

In our framework, the total distance in meters is used as a continuous predictor in the telematics
models and its effect is modeled using a smooth function. In addition, we propose to treat the
divisions of the driven distance by road types, time slots and week/weekend as compositional data
covariates in the claim count regression models. In this way, the effects of the absolute information
of the total distance driven and the relative information contained in the different divisions can be
structured and interpreted separately.

In the context of linear regression, Hron et al. (2012) propose to first apply the isometric logratio
transform (5) to map the compositions in the D-part Aitchison simplex to a (D—1) Euclidean space
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before including them as explanatory variables. More generally, in any regression context involving
a predictor, one can add a compositional predictor term n™P using the ilr transformed variables,
ie.

NP = Biz1 + ...+ Bp_12p-1 .- (7)

The fitted model does not depend on the choice of the orthonormal ilr basis since the coordinates
of & with respect to different orthonormal bases are orthogonal transformations of each other.
Using the ilr transformation the model parameters can be estimated without constraints and the
ceteris paribus interpretation of altering one z; without altering any other becomes possible. A
drawback is that only the first regression parameter, 51, has a comprehensible interpretation since
z1 explains relevant information about z;. The remaining coefficients are not straightforward to
interpret. Also the suggestion by Hron et al. (2012) to permute the indices in formula (5) and
construct D regression models, each time with a different component first, is undesirable. This is
especially so in our case where we have more than one compositional predictor and each model fit
is computationally intensive due to smooth continuous, spatial, and random effects.

Hence, we develop a new way to interpret and visualize the effect of a compositional predictor
(7) without the need of refitting the model. Following van den Boogaart and Tolosana-Delgado
(2013) and Pawlowsky-Glahn et al. (2015), we start by using the inverse ilr transform on the
model coefficients, i.e. set b = ilr~1(8) where 8 = (B1,...,8p_1)%, such that we can rewrite the
compositional predictor as

D-1 D-1
77cornp — Z /Bizi — Z 1lrz(b)lh'l(33) - <b7 w>a .
i=1 i=1

The composition b € SP can be interpreted as the simplicial gradient of 7°°™P with respect to x
(Barcel6-Vidal et al., 2011) and is the compositional direction along which the predictor increases
fastest. In particular, if we perturb x by a unit vector ﬁ in the direction of b, i.e. T = & P ﬁ,
then the predictor becomes

T = (b ) = (0,2 o = (b.a)a+ o (b, = 1+ bl
16]la 1]l

When D = 3, the estimated regression model can be visualized as a surface on a ternary diagram
(van den Boogaart and Tolosana-Delgado, 2013). For D > 3, a graphical representation is not
straightforward.

Further, we propose to perturb the composition in the direction of each component. This offers
a new interpretation for the effect of altering the composition on the predictor. For example, a
relative ratio change of @ > 1 (increase) or o < 1 (decrease) in the first component of & with
constant ratios of the remaining components can be achieved by perturbing the composition « by
Cla,1,...,1)  ie. 2 = x ®C(a,1,...,1)t = C(axy,z2,...,2p)". This leads to a change of the
predictor given by

D
(b,C(a1,...,1)")s = In(a) [m(bl) - %(Zln(bi))} — In(a)clr1 (b) (8)
=1

which is independent of the original composition . The effect of a relative increase in any of
the components can hence best be understood by considering the clr transform of b, of which the
elements sum to zero and indicate the positive or negative effect of each component on the predictor.
The difference in the predictor level between any two compositional data vectors & and y can be
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computed as

D
(bzoy)= In <$> clr;(b) ,

im1 Yi
a linear combination of the clr coordinates of b with weights given by the component-wise logratios.
A graphical representation of the effect of a compositional predictor can be made by visualizing
clr(b) and comparing the elements to zero. Since 8 = ilr(b) = V'In(b) = Viclr(b) and VV? =
Ip — (1/D)1p1h,, the clr transform of b can be written as clr(b) = V3. Confidence bounds can
thus be constructed using the corresponding covariance matrix VEV! where 3 is the estimated
covariance matrix related to estimating 3. To quantify the influence of the compositional predictor
on the level of the expected outcome in the Poisson and NB models, we exponentiate (8). The
effect of a relative ratio change of a in component ¢ = 1,..., D on the response scale is then given

by aclri (b)

4.2.3 Dealing with structural zeros in compositional predictors

An additional difficulty when incorporating the compositional information as predictors in the
analysis of the claim counts is the presence of proportions of a specific component that are exactly
zero. In the division of the driven distance by road type, for instance, many insureds did not
drive abroad during the observed policy period. Since compositional data are always analyzed by
considering logratios of the components (see Section 4.2.1), a workaround is necessary.

In the compositional data literature, different types of zeros are being distinguished (Pawlowsky-
Glahn et al., 2015). Rounded zeros occur when certain components may be unobserved because
their true values are below the detection limit (cfr. geochemical studies). Count zeros refer to zero
values due to the limited size of the sample in compositional data arising from count data. In our
setting, the zero values are truly zero and are not due to imprecise or insufficient measurements.
Such kind of zeros are called structural zeros. The structural zeros patterns in the data set are
listed in Appendix A of the supplementary material. The presence of zeros is most prominent for
splitting distance by road types as 40% of the drivers did not go abroad. Zeros are most often dealt
with using replacement strategies (see e.g. Martin-Fernandez et al., 2011, for an overview), which
do not make sense for structural zeros. A general methodology is still to be developed (see e.g.
Aitchison and Kay, 2003; Bacon Shone, 2003). In particular, there does not exist a method that
deals with compositional data with structural zeros as predictor in regression models. Applying
the ilr transform to the compositional data @ and using the transformed z as explanatory variables
in the predictor as discussed in Section 4.2.2 is no longer possible.

For an observation with structural zeros, we can only consider the subcomposition of nonzero
components. We let M C {1,2,..., D} denote the set of indices of the structural zeros of a compo-
sition . The subcomposition e of nonzero components M€ = {iy,...,in} ={1,2,..., D} \ M
of « is then obtained by applying the closure operation to the subvector (z;,,...,z;,) of x,
ie. mpye = C(xiy,. .., %i,,) = (Tiys-- - %i,,)/ D jerre Ti-  The set of all possible structural zero
patterns M is denoted by M. In the most general situation, 2 —1 possible zero patterns can occur
when dealing with compositional data with D components (a structural zero for every component
being excluded). To indicate the zero pattern of a composition & we introduce dummy variables

dy(x) =

1 if the set of indices of the structural zeros of x is equal to M ,
0 otherwise

for all M € M. We propose two approaches to accommodate for structural zeros in a regression
context with compositional predictors, either via conditioning on the structural zero pattern or via
projection onto the orthogonal complement of the structural zero parts.
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Conditioning approach We treat observations with different structural zero patterns as qual-
itatively different subgroups within the data and model the effect of the compositional predictor
conditional on the zero pattern. The compositional predictor term n®“™P of the regression model
specifies a distinct effect b|pse for each zero pattern:

oM — Z dpr(2)(b|ase, Tare)q Z dps () (ile(b|pge), ilr(xpre)),
MeM MeM

Conditional on the zero pattern M of the compositional data vector @, the contribution to the
predictor is given by the Aitchison inner product of the subcomposition @ of nonzero components
of  and a subcompositional simplicial gradient b|ysc of the same dimension. The notation b|yse
is used to indicate that the model parameters 3|pre = ilr(b|pse) differ by structural zero pattern.
Fitting this term requires us to compute for each compositional observation the ilr transform
ilr(xpre) of the subcomposition of nonzero parts and to model the compositional predictor effect
separately by zero pattern. Note that in case of only one nonzero component, the Aitchison inner
product is zero and there is no contribution to the linear predictor. If deemed necessary a categorical
effect based on the zero pattern can be added to n®™P.

Projection approach The compositional regression coefficients in the conditioning approach are
different for each structural zero pattern and hence only estimated using observations with that
particular zero pattern. Instead of modeling the compositional predictor effect separately by zero
pattern, we alternatively propose a parsimonious simplification in which the regression parameters
are shared across patterns.

To this end, we regard a subcomposition xjsc as an orthogonal projection of & that preserves the
relative information contained in xjsc and, simultaneously, filters out all the relative information
involving parts in x ) (Pawlowsky—Glahn et al., 2015). The clr plane HP is spanned by the non-

orthogonal, non- basis vectors w; = (bl,...,})l, Dgl, 51,..., D) for i = 1,...,D, where the
component equal to 251 is placed at the ith component. The subcomposition @ pze of the nonzero

parts can be represented by an orthogonal projection Py of the clr transformed vector clr(x) onto
the null space of {w;,i € M}, corresponding to the indices of the structural zeros of . van den
Boogaart et al. (2006) show that the projection Pps onto the orthogonal directions to M can be
computed as

(Pyrelr(x)) pre = clr(@pse)

and zero otherwise. Hence, the subvector of Pysclr(x) related to the nonzero parts of @ equals the
clr transform of the subcomposition x e and the remaining elements of Pysclr(x) related to the
structural zeros of  equal zero. We can express this projected clr vector with respect to the chosen
orthonormal ilr basis and define z = V! Pyclr(x) as a generalized isometric logratio transformation
from the simplex (allowing for zero components) to RP~!. Note that in case & has no structural
zeros, the generalized ilr transform coincides with the regular ilr transform in (6). We suggest to
use these generalized ilr coordinates in the compositional predictor and rewrite the term as

NP = Z Biz; = clr(b)'V V! Pysclr(x) = (clr(b), Pyclr(x)) = ((clr(b)) ase, clr(zaze))

= (clr(ch),clr(a:Mc)> = (bpse, Tpre)a, (9)

where we used the fact that the elements of a clr transform sum to zero and that (clr(b))ase,
the subvector of clr(b) related to the nonzero parts of @, and clr(bysc), the clr transform of the
subcomposition of b related to the nonzero parts of x, only differ by a vector of equal elements.
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Equation (9) shows that the compositional predictor in the projection approach is equivalent to
the Aitchison inner product of the subcompositions of both b and x corresponding to the nonzero
components of . In general, we can write

N = > " dyr () (bare, Tase )
MeM

Compared to the conditioning approach where the compositional regression coefficients b|yse are
conditional on the zero pattern, the projection approach is more parsimonious. The effect of each
subgroup defined by the structural zero patterns is obtained from the same model parameters 3,
using subcompositions by, of the corresponding compositional coefficient vector b = ilr_l(ﬂ). This
simplifying assumption entails that leaving out the zero components does not change the relative
riskiness of the remaining components. Given an observation with structural zeros, the interpre-
tation of the effect of a change to a nonzero component remains similar as before: if the relative
ratio of the ith component of ;e changes by «, then the predictor changes by In(«)clr;(byse). The
clr transformed subcomposition clr(byse) can be obtained by recentering the parts of clr(b) corre-
sponding to M€ around zero, i.e. clr(byse) = (clr(b))are — (= ;e pse clry(b)) Lo, where m = [M¢|
is the number of nonzero parts in . Therefore, using the projection approach, a single graphical
representation of clr(b) suffices to visualize and understand the effect of the compositional predictor
term for each structural zero pattern.

4.3 Model selection and assessment
Using the same form as Akaike’s information criterion, AIC for a GAM is defined as
AIC = —2-7+2-EDF (10)

where 7 is the log-likelihood, evaluated at the estimated model parameters obtained using penal-
ized likelihood maximization, and the effective degrees of freedom (EDF) is used instead of the
actual number of model parameters. For details about the calculation of the EDF see Wood et al.
(2016). We used the implementation as available in the R package mgcv version 1.8-18. As such,
(10) measures the quality of the model as a trade-off between the goodness-of-fit and the model
complexity.

For each of the four predictor sets, see Figure 2c, variables are selected by AIC using an exhaus-
tive search over all the possible combinations of variables given in Table 1. In our analysis, model
selection is done without involving policyholder-specific random effects. All model specifications
are estimated under both the Poisson and the negative binomial framework. We restrict to addi-
tive regression models (i.e. no interactions) such that an exhaustive search is still feasible and the
marginal impact of a single variable can be easily assessed, interpreted and visualized. Even though
the 2011 EU ruling prohibits a distinction between men and women in car insurance pricing, we
allow gender to be selected as a categorical predictor in the model. For the compositional predictors
based on the different divisions of the driven distance, 10 structural zero patterns occur for the
road types, 20 for the time slots and 3 for week/weekend, see Appendix A of the supplementary
material. The model selection is performed separately for the conditioning and projection approach
to the structural zeros. Following the projection approach, the three compositional predictor terms
we allow to be selected in the hybrid and telematics models are

=Y dul@P R R+ Y du( R 2l

MeMroad M eMtime
week week Week
+ E dn (237 ) bz, T3 hie)a
MEMWeek
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Following the conditioning approach, the effect of the compositional predictor is modeled separately
conditional on the structural zero pattern. However, based on the relative frequencies of the zero
patterns in the data set, we only allow an additional compositional predictor term for the distinction
by road type in the case that a car did not drive abroad, which occurs for 40% of the observations.
All remaining zero patterns are bundled into one residual group and their effect is modeled using
a categorical effect by, see Table A.4 of Appendix A. Using the symbolic structural zero pattern
notation of Appendix A, the most comprehensive compositional predictor term in the conditioning
approach can be denoted as

™ = dinnn (25 (b1, 254911 a + dinno(@f ) (BIFS, @i 10)a + (1 — di1na (25*Y)
— din1o(2PN)BE + dinnnn (25 (BTS, 25 5111 e + (1 — dinnnn (2™9))b5™

—I—du( week)<b’vveek Z;eﬁ(> (1 _dll( Week))b’vveek

Predictive performance of these models is assessed using proper scoring rules for count data, see
Table 2 (Czado et al., 2009). Scoring rules assess the quality of probabilistic forecasts through a
numerical score s(P,n) based on the predictive distribution P and the observed count n. Lower
scores indicate a better quality of the forecast. A scoring rule is proper (Gneiting and Raftery, 2007)
if 5(Q,Q) < s(P,Q) for all P and @ with s(P, Q) the expected value of s(P,-) under Q. In general,
we define by py = P(N = k) and P, = P(IN < k) the probability mass function and cumulative
probability function of the predictive distribution P for count variable N. The probability mass at
the observed count n is denoted as p,. The mean and standard deviation of P are written as up
and op, respectively, and we set ||p|| = Y32, p.

Score Formula

logarithmic logs(P,n) = —log py,
quadratic qs( P,

n
spherical sphs(P,n
n

Dawid-Sebastiani dss(P,

(
(
ranked probability  rps(P,
(
squared error ses(P,

Table 2: Proper scoring rules for count data.

We compare the predictive performance of the best models according to AIC under the four
predictor sets, with or without offset in the predictor (1), and using a Poisson or NB distribution.
We apply the proper scoring rules to the predictive count distributions of the observed claim counts.
We adopt a K-fold cross-validation approach (Hastie et al., 2009) with K = 10 and apply the same
partition to assess each model specification. Let ki € {1,2,... K} be the part of the data to which
the observed claim count n;; of policyholder ¢ in policy period t is allocated by the randomization.
Denote by P, " the predictive count distribution for observation n; estimated without the x;th
part of the data. The K-fold cross-validation score CV(s) is then given by

T;

I
CV(s) = Z s( ", nit)
Zz 1 1; =1 t=1

where s is any of the aforementioned proper scoring rules and smaller values of CV(s) indicate
better forecasts.
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5 Results

All computations are performed with R 3.4.1 (R Core Team, 2017) and, in particular, R package mgcv
version 1.8-18 (Wood, 2011) is used for the parameter estimation in the GAMs and compositions
version 1.40-1 (van den Boogaart et al., 2014) to compute the transformations of the compositional
data. For the brevity and clarity of this presentation, we only show the results (tables and figures)
for the Poisson models using the projection approach for the structural zeros and highlight differ-
ences with the negative binomial models and the conditioning approach, if any. As supplementary
material, we provide accompanying R code which illustrates how to apply the methods presented
in this work on simulated data with a similar structure. Following either the conditioning or the
projection approach to handle structural zeros, we demonstrate how to include a compositional
predictor in a GAM and how to visualize the effect.

5.1 Model selection

The variables selected for each of the predictor sets were identical for the Poisson and NB models,
see Table 3. The functional forms of the selected best models are given in Appendix B of the
supplementary material. The offset versions of the classic and time-hybrid model replace the term
f1(times) by In(time;), without any regression coefficient in front. This causes the expected number
of reported MTPL claims, u;; = E(N;j) = exp(n:it), to be proportional to the duration of the policy
period. In the offset versions of the meter-hybrid and telematics model, the flexible term related
to distance gets replaced by an offset In(distance;;), imposing the risk to be proportional to the
distance.

Predictor Classic Time-hybrid Meter-hybrid Telematics

Time x  offset x offset

Age

Experience X X X X X X

Gender X X
E Material X X X X X X
&  Postal code X X X X X X

Bonus-malus X X X X X X

Age vehicle X X X X X X

Kwatt X X X X

Fuel X X X X

Distance X offset X offset
% Yearly distance X X
< Average distance X X X X X
g Road type X X X X X X
E Time slot X X X X X X

Week /weekend X

Table 3: Variables contained in the best Poisson model for each of the predictor sets using the projection
approach for structural zeros. The second column of each predictor set refers to the model with
an offset for either time or meter. The best NB models were identical to the best Poisson models.

The models which are allowed to use the policyholder information prefer the use of experience,
measured as the years since obtaining the driver’s license, instead of age to segment the risk in
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young drivers. Gender is only selected as an important covariate in the classic models, not in any of
the hybrid models, indicating that the telematics information renders the use of gender as a rating
variable redundant. In the offset variants of both hybrid models the fuel term is dropped. The
newly introduced telematics predictors road type and time slot are selected in both the hybrid
and the telematics models. The week/weekend term is only selected in the offset variant of the
telematics model.

The second best models, with only a slightly higher AIC value, show that adding kwatt to
the classic model gives a comparable model fit and the same holds for adding week/weekend to
the hybrid and telematics models. Furthermore, fuel can easily be left out of the hybrid models
without deteriorating the fit.

Using the conditioning approach for structural zeros as opposed to the projection approach, the
main difference in the selection of variables is that the compositional predictor week/weekend is
always included in the hybrid and telematics models. Both the 1111 and the 1110 zero patterns
of road type are selected. Stepwise adding more zero patterns of road type to the predictor did
not improve AIC, and similarly for the division by time slot and week/weekend. The variables
selected were again identical under the Poisson and negative binomial model specification.

For each of these best model formulations, we added a policyholder-specific random effect in the
predictor (1) to account for possible dependence from observing policyholders over multiple policy
periods. However, none of the added random effects were deemed necessary at the 5% significance
level using the approximate test of Wood (2013).

5.2 Model assessment

Table 4 reports AIC and all 6 proper scoring rules obtained using 10-fold cross validation for each
predictor set under the Poisson model specification using the projection approach for structural
zeros. These performance tools unanimously indicate that the time-hybrid model without offset
scores best. The meter-hybrid model is a close second. Their respective versions with an offset
and the telematics model without offset conclude the top five according to all criteria except for
the Dawid—Sebastiani score. This demonstrates the significant impact of telematics constructed
variables on the predictive power of the model. In addition, the telematics model without off-
set outperforms the classic models across all assessment criteria. Hence, using only telematics
predictors is considered to be better than the use of the traditional rating variables.

Across all predictor sets, the use of an offset for the exposure-to-risk, either time or meter, is
too restrictive for these data. From a statistical point of view, the time or meter rating unit cannot
be considered to be directly proportional to the risk. However, from a business point of view, it is
convenient to consider a proportional approach due to its simplicity and explainability.

Similar results are obtained under the negative binomial model specification and using the
conditioning approach for structural zeros. The rankings of the predictor sets according to AIC
are the same as in Table 4 under the negative binomial model specification and/or using the
conditioning approach. The AIC values for each predictor set under the NB model specification
compared to their Poisson counterpart were slightly higher for the classic and hybrid models and
slightly lower for the telematics models indicating that only the telematics predictor sets benefit
from the additional parameter to capture overdispersion. The model assessment using proper
scoring rules led to the same conclusions as before.

Beside an exhaustive search among additive terms, we have explored the use of interactions
among categorical, among continuous, between categorical and continuous, and between categorical
and compositional predictors. Slight marginal improvements in AIC could only be achieved in the
classic model by further refining the effects of experience, age vehicle and material by gender
without changing the rankings of the best models in Table 4.
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AIC logs x10 qs x10 sphs x10 rps x10% dss ses x10%

Predictor set  Offset EDF
redictor se s¢ value, rank value, rank  value, rank value, rank  value, rank value, rank value, rank

Classic no 32.15 11896 6 1.790 6 —-9.1858 6 —9.5822 6 4224 6 —-2206 5 4.535 6
yes 2727 11995 8 1.804 8 —-9.1838 8 —9.5816 8 4234 8 2129 6 4.547 8
Time-hybrid  no 34.11 11734 1 1.766 1 —-9.1909 1 —-9.5837 1 4196 1 -—-2.266 1 4502 1
yes 30.41 11811 3 1773 -9.1891 3 -9.5831 3 4205 3 2212 4 4512 3
Meter-hybrid no 3432 11743 2 1.767 2 —-9.1907 2 —-9.5836 2 4197 2 —=2.259 2 4.503 2
yes 30.37 11866 5 1.785 5 —9.1884 4 -—9.5829 4 4209 4 -=2.007 7 4.517 4
Telematics no 15.05 11862 4 1.784 4 —-9.1871 5 —-9.5826 5 4216 5 —2.226 3 4.526 5
yes 11.43 11989 7 1.803 7 -9.1850 7 —9.5820 7 4228 7 -1965 8 4538 7

Table 4: Model assessment of the best models according to AIC for each of the four predictor sets under the
Poisson model specification and using the projection approach for structural zeros. The second
row of each predictor set refers to the model with an offset for either time or meter. For each
model we list the effective degrees of freedom (EDF), Akaike information criterion (AIC) and 6
cross-validated proper scoring rules: logarithmic (logs), quadratic (gs), spherical (sphs), ranked
probability (rps), Dawid-Sebastiani (dss), and squared error scores (ses). For AIC and the proper
scoring rules, the first column represents the value and the second column the rank.

5.3 Visualization and discussion

The effects of each predictor variable in the best time-hybrid model without an offset are graph-
ically displayed in Figure 5 for the policy variables and in Figure 6 for the telematics variables.
By exponentially transforming the additive effects, we show the multiplicative effects on the ex-
pected number of claims for each categorical parametric, continuous smooth or geographical term
in the fitted model. For the categorical predictors we quantify the uncertainty of those estimates
by constructing individual 95% confidence intervals based on the large sample normality of the
model parameter estimators. Bayesian 95% confidence pointwise intervals are used for the smooth
components of the GAM and include the uncertainty about the intercept (Marra and Wood, 2012).
For the compositional data predictors, we visualize the clr transform of the corresponding model
parameters with 95% confidence intervals along with a reference line at zero (see Section 4.2.2).
In the supplementary material, similar graphs for the other three predictor sets, see Figure 2c¢, are
shown in Appendix C and the relative importance of these predictors is quantified and visualized in
Appendix D. In the remainder of this section, we discuss the insights and interpretations for both
the policy and telematics variables in each of these models.

Policy variables The rating unit policy period in the classic and time-hybrid models always
has a monotone increasing estimated effect. The longer a policyholder is insured, the higher the
premium amount, ceteris paribus. Using the fact that the level of the nonlinear smooth component
is not uniquely identifiable (see Section 4.1), we vertically translated the estimated smooth term
to pass the point (365, 0) on the predictor scale (and hence (365, 1) on the response scale) for ease
of interpretation.

The smooth effect of experience embodies the higher risk posed by younger, less experienced
drivers. The increased risk is more outspoken in the first two years for the hybrid models as
compared to the classic model.

In the classic model, the significant effect of gender indicates that women are 16% less risky
drivers than men. However, when telematics predictors are taken into account in the hybrid models,
the categorical variable gender is no longer selected as predictor. Neither did any interaction term
between gender and a categorical, a continuous or a compositional predictor improve AIC. The
perceived difference between women and men can hence be explained through differences in driving
habits. In particular, female drivers in the portfolio drive significantly fewer kilometers on a yearly
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Figure 5: Multiplicative response effects of the policy predictor variables of the time-hybrid model.

basis compared to men (15409 vs 18 570 on average, with a p-value smaller than 0.001 using a two
sample t-test). Similar findings are reported in Ayuso et al. (2016a,b). In light of the EU rules on
gender-neutral pricing in insurance, this shows how moving towards car insurance rating based on
individual driving habits and style can resolve possible discrimination of basing the premium on
proxies such as gender.

The smooth effects of bonus-malus in the classic and hybrid models are nonlinear and somewhat
counterintuitive. Given the lack of a lengthy claim history of the young drivers of this portfolio, the
BM levels of the insureds are not yet fully developed and stabilized. The majority of the drivers has
a bonus-malus (BM) level between 4 and 12 for which the effect on the claim frequency is increasing.
For the highest BM levels however, the effect is declining, albeit with a high uncertainty due to
a lack of observations in this region. Furthermore, the effect does not decrease for the lowest BM
levels. This can be explained by an improper use of the BM scale as marketing tool to attract new
customers. By lowering the initial value of the BM scale, the insurer can reduce the premium a
potential new policyholder has to pay.

When it comes to characteristics of the car, insureds driving older vehicles have an estimated
higher risk of accidents. The smooth effect of age vehicle is estimated as a straight line on the
predictor scale in the classic and hybrid models. The effect of kwatt in the hybrid models also
reduced to a straight line on the predictor scale. When the insured vehicle has more horsepower,
the estimated expected claims number is lower. The categorical predictor fuel shows that vehicles
using petrol have an estimated lower risk for accidents compared to diesel. This difference is
however smaller and no longer statistically significant in the hybrid models compared to the classic
model, where it serves as a proxy variable for the distance driven. Indeed, vehicles using diesel as
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opposed to petrol drive significantly more kilometers in our portfolio (18940 vs 13267 on average
on a yearly basis).

In both the classic and hybrid models, the policies without material damage cover have a
20% lower estimated expected number of claims. This may be explained by the reluctance of
some insureds without additional material damage coverage to report small accidents. Due to
bonus-malus mechanisms being independent of the claim amount, filing a claim leads to premium
surcharges which may be more disadvantageous for policyholders than for them to defray the third
party. This phenomenon is known as the hunger for bonus (Denuit et al., 2007). Insureds with an
additional material damage cover are less inclined to do so since their own, first party costs are
also covered making it more worthwhile to report a claim at fault. Including telematics variables
in the model does not affect this discrepancy.

The geographical effect (postal code), plotted on top of a map of Belgium for the classic and
hybrid models, captures the remaining spatial heterogeneity based on the postal code where the
policyholder resides. For the classic model, the graph shows higher claim frequencies for urban areas
like Brussels in the middle, Antwerp in the north and Liege in the east and lower claim frequencies
in the more sparsely populated regions in the south. The geographic variation however decreases
strongly in the hybrid models due to the inclusion of telematics predictors not taken into account
in the classic model. The EDF corresponding to the spatial smooth reduced from 15.8 in the classic
model to 4.1 and 4.4 in the time and meter hybrid model, respectively. This is satisfactory as it
means, instead of overrelying on geographical proxies, the hybrid models are basing the insurance
premium on actual differences in driving habits which is more closely related to the accident risk.

Telematics variables In the meter-hybrid and telematics models, distance is used as the rating
unit. Similar to the time effect in the classic and time-hybrid model, the effect of the risk exposure
is estimated as a monotone increasing function. The accident risk however does not vanish for
insureds who hardly drive any kilometers during the observation period.

The yearly distance is used in the time-hybrid model, which uses time as exposure, to dif-
ferentiate between drivers who travel many versus few kilometers on a yearly basis. In this way,
the driven distance is rescaled on a yearly basis (see Section 3.2) and used as an additional risk
factor having a weaker effect on the claim frequency compared to the meter-hybrid and telematics
models where distance is used a rating unit. In both hybrid models and the telematics model,
the estimated average distance effect shows lower claim frequencies for insureds who on average
drive long distances.

Our modeling approach using compositional predictors separates on the one hand the effect of
an overall increase in the distance driven and on the other hand the effect of a change in the division
of the distance driven into different categories. This allows us to qualitatively and quantitatively
interpret and visualize the impact of individual driving habits on the expected claim frequencies.

The clr transforms of the model coefficients related to the compositional road type predictor
in the telematics model show how insureds who drive relatively more on urban roads have higher
claim frequencies and insureds who drive relatively more on the ‘other’ road type have lower claim
frequencies. In the hybrid models, these effects are headed in the same direction with the exception
that motorways is perceived as riskier. The elevated accident risk for insureds driving more on
urban roads is in line with Paefgen et al. (2014), where the driven distance is divided over ‘highway’,
‘urban’ and ‘extra-urban’ road types. The authors however neglect the compositional nature of this
predictor in the analysis and do not incorporate any of the classical policy risk factors in the logistic
regression model. In Ayuso et al. (2014), the percentage of urban driving is considered an important
variable to predict either the time or the distance to the first accident, although percentages driven
on different road types are not considered. Using either a quadratic effect or a categorical effect
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Figure 6: Multiplicative response effects of the telematics predictor variables of the time-hybrid model.

(urban driving > 25%) in Weibull regression models shows how increased percentages of urban
driving reduce both the expected time or distance to the first accident.

The estimated model coefficients 8¢ of the compositional road type predictor and the cor-
responding simplicial gradient 5% and clr transform clr(b™*?) are presented in Figure 7. Based
on the latter we can quantitatively interpret the effect of road type in the time hybrid model.
For instance, a relative ratio increase of 50% to the ‘other’ road type component, with constant
ratios of the remaining components, results in a multiplicative decrease of 1.507%19 = 0.959
for the expected number of claims. Applied to the compositional road type data vector & =
(0.442,0.282,0.252,0.024) of Figure 7, this relative ratio increase to the ‘other’ road type compo-
nent would change the compositional vector to & = x®C(1,1.50,1,1)! = (0.387,0.371,0.221,0.021)*.
Based on our projection approach for structural zeros, the interpretation is similar for a relative
ratio change to a nonzero component of observations with a certain zero pattern. In particular, for
someone who did not drive abroad we base the interpretation of the effect on the clr transform of the
related subcomposition, i.e. clr(bi358) = (0.038, —0.099, 0.061)¢, obtained by recentering clr(b™34)
without the abroad component around zero.
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Figure 7: Representations in the ilr, simplex and clr space of the estimated regression parameters in the
time hybrid model with respect to the compositional predictor term road type (with compo-
nents urban, other, motorways and abroad) and the average compositional data vector without
structural zeros.

The compositional time slot predictor in the hybrid and telematics models indicates that pol-
icyholders who drive relatively more in the morning have lower claim frequencies and policyholders
who drive relatively more in the evening and during the night have higher claim frequencies. For
instance, the multiplicative response effect of a relative ratio increase of 50% in the evening com-
ponent (between 19h and 22h) is equal to 1.50%1%5 = 1.065. In Paefgen et al. (2014), the accident
risk is considered to be lower during the daytime (between 5h and 18h) compared to the evening
(between 18h and 21h), based on the estimated coefficients of linear model terms of the log trans-
formed percentages of the driven distance in these time slots. Ayuso et al. (2014) reports how a
higher percentage of driving at night reduces the expected time to a first accident, where the effect
is modeled linearly, with no further distinction in time slots.

6 Conclusion

Telematics insurance offers new opportunities for insurers to differentiate drivers based on their
driving habits and style. By aggregating the telematics data on the level of the policy period
by policyholder and combining it with traditional policy(holder) rating variables, we construct
predictive models for the frequency of MTPL claims at fault. Generalized additive models with
a Poisson or negative binomial response are used to model the effects of predictors in a smooth,
yet interpretive way. The divisions of the driven distance into 4 road types and 5 time slots forms
a challenge from a methodological point of view that has not been addressed in the literature.
We demonstrate how to include this information as compositional predictors in the regression and
formulate a new way of how to interpret their effect on the average claim frequency.

Our research reveals the significant impact of the use of telematics data through an exhaustive
model selection and an assessment of the predictive performance. The time-hybrid is the best
model according to AIC and all proper scoring rules, closely followed by the meter-hybrid model.
The model using only telematics variables is ranked higher than the best classic model using only
traditional policy information.

The compositional predictors show that a further classification of the driven distance based on
the location and the time is relevant. Our contribution indicates that driving more on urban roads
or motorways and in the evening or at night contributes to a riskier driving pattern. The best
hybrid models highlight that certain popular pricing factors (gender, fuel, postal code) are indeed
proxies for the driving habits and part of their predictive power is taken over by the distance driven
and the splits into different categories. Hence, we demonstrate using careful statistical modeling
how the use of telematics variables is an answer to the European regulation on insurance pricing
practices that bans the use of gender as a rating factor.

In the case of multiple insured drivers, it is unclear which characteristics (such as age, experience
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and gender) the insurer must use to determine the premium. We proceed, in consultation with the
Belgian insurer providing the data, by identifying the driver with the lowest experience as the main
driver and use his policyholder information as predictors in the regression for tarification purposes.
In practice, when a parent adds a child as a driver in the policy, a premium surcharge is often
avoided to prevent the policyholder from lapsing. By shifting towards pricing based on telematics
information as we do in this research, this tarification issue becomes less of a problem because the
premium will be usage-based.

Pricing using telematics data can be seen as falling in between a priori and a posteriori pricing.
The driving habits and style are no traditional a priori variables since they cannot be determined
before the policyholder starts to drive. Insurers now reason that available UBI products are only
purchased by drivers who consider themselves to be either safe or low-kilometer drivers. This
potential form of positive selection, which could not be quantified based on the studied portfolio
alone, validates an upfront discount on the traditional insurance premium. Based on the telematics
data collected over time, insurers can set up a discount structure to adapt the premium in an a
posteriori way. The discount structure can depend on the actual driven distance, with a further
personalized differentiation based on the riskiness of the profile as perceived from the driving habits
of the insured. The insights provided in this paper reveal which elements can be adopted in such a
structure, for instance, by making kilometers driven on urban roads or in the evening or at night
more expensive.

In conclusion, telematics technology provides means to insurers to better align premiums with
risk. Pay-as-you-drive insurance is a first step in which the number of driven kilometers, the type
of road and the time of day are combined with the traditional self-reported information such as
policyholder and car characteristics to calculate insurance premiums. A next step is pay-how-you-
drive insurance, where on top of these driving habits also the driving style is considered to assess
how risky someone drives by monitoring for instance speed infringements, harsh braking, excessive
acceleration, and cornering style. The ideas and statistical framework presented can be extended
to incorporate such additional pay-how-you-drive predictors if they are available.
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A Structural zero patterns of the compositional predictors

We give an overview of the structural zero patterns for the division of the number of meters in road types
(Table A.1), time slots (Table A.2) and week/weekend (Table A.3). The pattern is represented in the first
column by a code indicating which components are zero (0) or non-zero (1). For each structural zero pattern,
we tabulate their absolute and relative frequency and the compositional mean of the nonzero components,
which for n observations x; = (2;1,...,%;p)" is defined as

n n 1/n n 1/n t
=1 =1 i=1

resulting in the closed componentwise geometric mean. Following the principle of working on coordinates,
we can alternatively write the compositional mean as

z— il (1 Zilr(w») ,
n =1

where we first transform the compositional data from SP to RP~! using the ilr transformation, then compute
the mean in RP~! and finally apply the inverse ilr transformation to obtain the compositional mean in SP.

Road type Number Percent Urban Other Motorways Abroad

1111 18821 0.5659  0.4421 0.2822 0.2516 0.0241
1110 13540 0.4071  0.5079 0.2782 0.2139 -
1100 481 0.0145  0.5923 0.4077 -~ -
1101 258 0.0078  0.4960 0.4648 - 0.0392
0001 131 0.0039 - - - 1
1010 7 0.0002 09075 - 0.0925 -
1001 7 0.0002 0.0034 - - 0.9966
1000 6 0.0002 1 - - -
0101 5 0.0001 - 0.0002 - 0.9998
0111 3 0.0001 - 0.0130 0.0833 0.9038

Table A.1: Structural zero patterns for the division of meters into road types, along with their absolute and
relative frequency and the compositional mean of the subcompositions of nonzero components.
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Time slot Number Percent 6h-9h30 9h30-16h 16h-19h 19h-22h 22h-6h

11111 31886 0.9587  0.1472  0.4699 0.2159  0.1010  0.0661
11110 991 0.0298  0.2000  0.5090 0.2323  0.0587 -
11101 130 0.0039  0.2060  0.5953 0.1296 - 0.0691
11100 110 0.0033  0.2134  0.6238 0.1628 - -
01111 47 0.0014 - 0.5398 0.1983  0.1339  0.1280
01110 23 0.0007 - 0.5850 0.2793  0.1357 -
01100 22 0.0007 - 0.7912 0.2088 - -
11000 16 0.0005 0.1459  0.8541 - - -
11001 10 0.0003  0.0697  0.8000 - - 0.1304
01000 7 0.0002 - 1 - - -
01001 3 0.0001 - 0.6803 - - 0.3197
01010 2 0.0001 - 0.3054 - 0.6946  —
10000 2 0.0001 1 - - - -
01101 2 0.0001 - 0.6698 0.1744 - 0.1558
10001 2 0.0001 0.1271 - - - 0.8729
11011 2 0.0001 0.0653  0.5536 - 0.2762 0.1049
00100 1 0.0000 - - 1 - -
00110 1 0.0000 - - 0.8200  0.1800 -
10010 1 0.0000 09787 - - 0.0213 -
10110 1 0.0000 0.2451 - 0.2935 04614 -

Table A.2: Structural zero patterns for the division of meters into time slots, along with their absolute and
relative frequency and the compositional mean of the subcompositions of nonzero components.

Week/weekend Number Percent Week — Weekend

11 33186 0.9978  0.7490 0.2510
10 72 0.0022 1 -
01 1 0.0000 - 1

Table A.3: Structural zero patterns for the division of meters into week and weekend, along with their
absolute and relative frequency and the compositional mean of the subcompositions of nonzero
components.
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Road type Number Percent Urban Other Motorways Abroad

1111 18821 0.5659  0.4421 0.2822 0.2516 0.0241
1110 13540 0.4071  0.5079 0.2782 0.2139 -
0 898 0.0270 - - - -

Time slot Number Percent 6h-9h30 9h30-16h 16h-19h 19h-22h 22h-6h

11111 31886  0.9587  0.1472  0.4699 0.2159  0.1010  0.0661
0 1373 0.0413 -

Week/weekend Number Percent Week — Weekend

11 33186 0.9978  0.7490 0.2510
0 73 0.0022 -

Table A.4: Structural zero patterns for the division of the number of meters into road types, time slots
and week/weekend as recognized in the models following the conditioning approach.

B Functional forms of the selected best models

We write down the functional forms of the predictors of the selected best models under the Poisson model
specification and using the projection approach for structural zeros of compositional predictors. In the
preferred classic model the predictor can be written as

nflassw Bo + figender;, + fomaterial;, + fS3fuel; + fi(time;) + fo(experience,,)
+f3(bonus-malus;;) + fis(age vehicle,) + fs(lat;,long,,).

The predictor in the best time-hybrid model is

ngme'hybrid = By + fimaterial;, + Bafuel; + f1(time);; + fo(experience;,) + f3(bonus-malus;,)

+f4(age vehiclelt) + fs(latit,longl-t) + fs(yearly distanceit) + fe(average distance,,)
D S G R SN e e
MeMrO'Ld A{EM':)III(,
and for the preferred meter-hybrid model we have

nz-r?mr'hybrid = By + fimaterial;, + Bofuel; + fi(experience,,) + f2(bonus-malus;)

+f3(age vehiclen) + fs(lat;, long,,) + fis(distance;;) + fs(average distance)
Y @B et Y () B ).
M e Mroad M € Mtime

Finally, the predictor in the best telematics model is

piclematics — g, 4 f (distance);; + fo(average distance;)
§ road road road E tlme time _ time
+ dJW blc ) 1tMC>a+ d]\/f( )<b Me » thC>(l'
]\/[eMrO'ld MeMtiIne

C Graphical displays of the multiplicative response effects

We visualize the effects of each predictor variable of the classic model in Figure C.1, of the telematics
model in Figure C.2 and of the meter-hybrid model in Figures C.3 for the policy variables and C.4 for the
telematics variables. These graphs correspond to the selected best models without offset under the Poisson
model specification and using the projection approach for structural zeros.
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Figure C.1: Multiplicative response effects of the predictor variables of the classic model.
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Figure C.2: Multiplicative response effects of the predictor variables of the telematics model.



Figure C.3: Multiplicative response effects of the policy predictor variables of the meter-hybrid model.
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D Relative importance of the predictors

To assess the relative importance of the predictor variables in the model, we construct histograms of their
multiplicative response effects for each observation in the data set. This is done for the selected best models
under the Poisson model specification and using the projection approach for structural zeros. The graphs
are shown, in the variants without an offset for time or meter, for the classic model in Figure D.5, for
the telematics model in Figure D.6, for the time-hybrid model in Figures D.7 and D.8 and for the meter-
hybrid model in Figures D.9 and D.10. For the hybrid models, we construct separate graphs for the predictor
variables derived from the policy and telematics information. For categorical predictors the histogram reduces
to a bar plot of the categorical effects and for the continuous and geographical predictors to a histogram of
the exponentiated smooth effects. For a compositional predictor, such as time slot, we plot a histogram of the
exponential of the related term Y ¢ yqeime dar (zH) (DY, "\ )a- To rank the influence of the different
policy and telematics variables on the claim frequency, we use the standard deviations over all observations
of the effects on the predictor scale, see Table D.5. Under the offset restriction, the logarithm of time or
meter is used as an explanatory variable in the predictor (without any regression coefficient in front) and we
report its standard deviation.

Predictor Classic Time-hybrid  Meter-hybrid Telematics
Time 0.36 0.69 039 0.69
Age
Experience 0.18 0.14 0.16 0.11 0.16 0.12
. Gender 0.09 0.09
.5 Material 0.11 0.11 0.11 0.10 0.11 0.11
&  Postal code 021 020 015 014 015 0.16
Bonus-malus 0.16 0.18 011 0.15 0.12 0.15
Age vehicle 0.08 0.10 0.09 0.10 0.09 0.12
Kwatt 0.07 0.06 0.07 0.08
Fuel 0.09 0.09 0.05 0.05
Distance 0.48 095 049 0.95
% Yearly distance 0.32 0.36
= Average distance 0.22 024 020 031 022 0.34
QE_, Road type 0.12 0.13 0.12 0.15 0.16 0.20
g Time slot 0.20 0.20 020 0.17 022 0.21
Week /weekend 0.07

Table D.5: Standard deviations of the effects on the predictor scale in the best Poisson model for each of
the predictor sets using the projection approach for structural zeros. The second column of
each predictor set refers to the model with an offset for either time or meter.
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Figure D.5: Relative frequencies of the multiplicative response effects of the predictor variables of the
classic model.
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Figure D.6: Relative frequencies of the multiplicative response effects of the predictor variables of the
telematics model.
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Figure D.7: Relative frequencies of the multiplicative response effects of the policy predictor variables of

the time-hybrid model.
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Figure D.8: Relative frequencies of the multiplicative response effects of the telematics predictor variables
of the time-hybrid model.

36



4 .
06 064
c
g o4 >
S 2
a ©
3 o a
a o2
0.0
%. 08012 1 0.9043
§ 2 Material damage cover effect Fuel effect
8
6
6
1 E =
2 2,
24 2
73 3
[a} [a}
2 27
0
0 01
0.75 100 125 1.50 06 08 10 12 06 0.8 1.0 12
Experience effect Kwatt effect Bonus-Malus effect
5
6 4
2 23
2 z
3 k73
[a] a,
2
1
0 0
1.0 12 14 16 05 07 0.9 11 13
Age vehicle effect Spatial effect

Figure D.9: Relative frequencies of the multiplicative response effects of the policy predictor variables of
the meter-hybrid model.
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Figure D.10: Relative frequencies of the multiplicative response effects of the telematics predictor variables
of the meter-hybrid model.
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